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Abstract—Daubechies wavelets proposed by Ingrid

Daubechies are a family of orthogonal wavelets and are

used for frequency analysis, multi-resolution analysis,

statistical feature value analysis, etc. Kuhl and Bhairgond

(2000) applied the Daubechies wavelet to estimate stochastic

counting processes with time-varying intensity functions.

In this paper, we develop a Daubechies wavelet estimation

tool for the stochastic counting processes; Daube-WET, as a

web-based free application. A case study is given to illustrate

how to use Daube-WET with real failure time data of a

repairable system.

Keywords–Tool development; Daubechies wavelet; statistical
estimation; stochastic point processes; web-based free appli-
cation.

1. INTRODUCTION

Daubechies wavelets proposed by Ingrid Daubechies [3] are

a family of orthogonal wavelets and used for frequency

analysis, multi-resolution analysis, statistical feature value

analysis, etc. in a variety of research areas including speech

recognition, character recognition, image analysis. Recently,

the wavelet-based approach has also received much attention

for statistical inference of stochastic processes. Especially, the

discrete Haar wavelets [8] have been used for alternative non-

parametric estimation for stochastic counting processes with

time-varying intensity functions. Donoho and Johnstone [4],

[5], [7], Donoho et al. [6], Kolaczyk [9], Nason [13] developed

the discrete-Haar wavelets shrinkage estimation methods with

several kinds of denoising and thresholding rules to estimate

non-stationary Poisson processes.

The above statistical inference approaches are categorized into

non-parametric estimation for the non-stationary Poisson pro-

cesses without the complete knowledge of intensity functions,

where the underlying point process data are the group data,

which are event-occurrence data during time intervals. Xiao

and Dohi [16], [17] applied the above discrete Haar wavelets

shrinkage estimation methods to analyze the software fault

count data observed in the testing phases, and established non-

parametric inference schemes for software reliability growth

models [12]. Recently, Wu et al. [19] developed W-SRAT;

a Wavelet-based software reliability assessment tool by im-

plementing the existing Haar wavelets shrinkage estimation

methods and a novel prediction algorithm for the future.

On the other hand, when the event-occurrence time data

for non-stationary Poisson processes are available, the Haar

wavelets shrinkage estimation methods do not work because

they are regarded as the complete data but not the incomplete

data as the group data. In fact, such data have been observed

in the lifetime data for repairable systems [1], [2]. More

specifically, when a system fails, the minimal repair is made

instantaneously, where the system’s function is recovered with-

out changing its age. Under the minimal repair assumption,

the cumulative number of failures/repairs is described by

a non-stationary Poisson process. There are already well-

known estimation tools such as CASRE [11] and SRATS [14]

available for practitioners or researchers to use. However, these

tools are based on the parametric assumptions of the non-

stationary Poisson process. In other work, it is rare to know

the parametric form of the non-stationary Poisson process in

advance. In this scenario, statistical estimation tools based

on non-parametric estimation methods are useful. Wavelet-

based non-parametric estimation methods have demonstrated

excellent estimation performance in many fields. Kuhl and

Bhairgond [10] developed a Daubechies wavelet estimator

and applied it to estimate the non-stationary Poisson process,

where they dealt with a periodic intensity function to represent

the cyclic behavior of event occurrence. Xiao and Dohi [15]

applied the Kuhl and Bhairgond estimator [10] based on

the Daubechies wavelet to software fault count data, and

investigated applicability to software reliability estimation.

In this way, Daubechies wavelets have been known as a useful

tool to estimate the stochastic counting processes and their

associated codes are open in StackOverflow and MATLAB

& Simulink. To our best knowledge, unfortunately, the Kuhl

and Bhairgond estimator [10] has not been implemented yet.

In addition, we point out that their estimator is regarded as

an approximation of the well-known naive estimator, so it is

possible to revisit the Kuhl and Bhairgond estimator [10]. In

this paper, we develop a Daubechies wavelet estimation tool

for the stochastic counting processes; Daube-WET, as a web-

based free application.

The remaining part of this paper is organized as follows.

In Section 2, we introduce the Daubechies wavelets. Sec-

tion 3 concerns the non-parametric estimation for non-

stationary Poisson processes, where the naive estimator and

the Daubechies wavelet estimators are summarized. In Section

4, we overview Daube-WET from the viewpoints of the

architecture and functionality. Section 5 is devoted to a case
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study with real failure time data of a repairable system. Finally,

the paper is concluded in Section 6.

2. DAUBECHIES WAVELETS

2.1. Definition

Daubechies [3] proposed a set of continuous and compactly

supported wavelets, which are very popular in the wavelet

analysis field. The Daubechies wavelets are not defined in

closed form, where the Daubechies scaling function and

wavelet function are defined in the following forms;

φ(t) =
n∑

i=0

hiφ(2t− i), (1)

ψ(t) =

n∑
i=0

(−1)ihn−iψ(2t− i). (2)

In Eqs.(1) and (2), the filter coefficients hi are given in the

reference [3], and n is the support width and determines the

smoothness of the functions φ(t) and ψ(t). The starting values

{φ(t), t = 1, 2, . . . , n − 1} can be obtained by solving the

recursive formula;⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
t=0 φ(t) = 1,

φ(0) = 0,

φ(n) = 0,

φ(t) =
∑n

i=0 hiφ(2t− i), t = 1, 2, . . . , n− 1.

The other values of φ(t) with t ∈ [0, n] and t �= 1, 2, . . . , n−1
are calculated in Eq. (1).

2.2. Wavelet Approximation

Dissimilar to discrete Haar wavelets [8], Daubechies wavelets

[3] have smooth and continuous basis functions except at

n = 1 in Eqs.(1) and (2). So, the Daubechies wavelets can

approximate an arbitrary function such as an intensity function

of a non-stationary Poisson process, λ(t), which is assumed

to be an absolutely continuous function. Since the Daubechies

scaling function φ(t) in Eq.(1) can take negative values, one

needs a positive basis function for representing a positive λ(t).
Walter and Shen [18] developed a positive basis function for

estimating probability density functions.

Let φ(t) be the Daubechies scaling function having compact

support. The positive basis function by Walter and Shen [18]

is given by

Pr(t) =
∑
j∈Z

r‖j‖φ(t− j) (3)

with parameter r satisfying a ≤ r<1, where Z is a set of

all integers. The parameter r controls the minimum value of

Pr(t), so that the minimum value of Pr(t) is greater than or

equal to 0 when r = a (>0). Figure 1 illustrates the positive

basis functions with r = 0.1 and r = 0.5 for φ(t) with n = 7.

In this case, we can see that the minimum value of Pr(t) is

less than 0 when r = 0.1.

(a) n = 7 and r = 0.1. (b) n = 7 and r = 0.5.

Figure 1: Positive basis functions.

By using the positive basis function, Pr(t), a positive repro-

ducing kernel, kr(t, s) ∈ V0, is given by

kr(t, s) =

(
1− r
1 + r

)2 ∞∑
a=−∞

Pr(t− a)Pr(s− a). (4)

Let k(t, s) denote a reproducing kernel satisfying∫ ∞

−∞
k(t, s)λ(s)ds = λ(t), (5)

where λ(t) is an arbitrary continuous function. For λ(t) ∈
L2(R), an approximation of the function λ0(t) ∈ V0 is

constructed as

λ0(t) ≈
∫ ∞

−∞
kr(t, s)λ(s)ds. (6)

In general, the approximation of an arbitrary function λ(t) ∈
Vm is given by

λm(t) =

∫ ∞

−∞
kr,m(t, s)λ(s)ds, (7)

where kr,m(t, s) in Eq.(7) is the positive reproducing kernel

in Vm and is given by

kr,m(t, s) = 2mkr(2
mt, 2ms). (8)

3. DAUBECHIES WAVELET-BASED ESTIMATION

3.1. Non-stationary Poisson Process

Let {N(t), t ≥ 0} be a stochastic counting process in the

discrete integer space N(t) = 0, 1, 2, . . .. The stochastic

process N(t) is said a non-stationary Poisson process if the

following conditions hold.

• N(0) = 0,

• {N(t), t ≥ 0} has independent increment,

• Pr{N(t+Δt)−N(t) ≥ 2} = o(Δt),
• Pr{N(t+Δt)−N(t) = 1} = λ(t;θ)Δt+ o(Δt),

where the function λ(t;θ) is an absolutely continuous func-

tion, called the intensity function, θ is the model parameter

(vector), and o(Δt) is the higher-order term of the infinitesimal

time Δt, satisfying limΔt→0 o(Δt)/Δt = 0. From a few

algebraic manipulations, it is not so difficult to obtain the

probability mass function;

Pr{N(t) = n} = Λ(t;θ)n

n!
e−Λ(t;θ), (9)

871



where

Λ(t;θ) = E[N(t)] =

∫ t

0

λ(u;θ)du (10)

is the mean value function with the parameter vector θ.

3.2. Non-parametric Estimation

Suppose that the mean value function Λ(t;θ) and the intensity

function λ(t;θ) are known, but the parameters θ are unknown.

Then we can estimate a few representative statistical esti-

mation methods. The commonly used technique to estimate

the parameter θ in Λ(t;θ) and λ(t;θ) is the maximum

likelihood estimation. Suppose that n event-occurrence times

t = (t1, t2, . . . , tn) with right truncation at T (≥ tn) are

available. Then, the log-likelihood function for the time-

domain data is given by

LLF (θ; t) =
n∑

i=1

λ(ti;θ)− Λ(T ;θ). (11)

By maximizing LLF (θ; t) with respect to θ, we get the

maximum likelihood estimate θ̂.

Next, we consider the case where the intensity function

λ(t;θ) = λ(t) is completely unknown. The most intuitive

but the simplest method to estimate the intensity function

is a piecewise-linear interpolation, which is called the naive

(natural) estimate. For the n event-occurrence time data,

ti (i = 1, 2, · · · , n) with the right-truncation T (≥ tn), define

λ̂(t) =

{
1

ti−ti−1
, t0 ≤ t ≤ ti; i = 1, · · · , n, t0 = 0,

1
T−tn

, tn ≤ t ≤ T.
(12)

Then we have the following step-function estimate with break-

points ti;

Λ̂(t) =

∫ t

0

λ̂(x)dx

=

{
i+ t−ti

ti+1−ti
, ti ≤ t ≤ ti+1; i = 0, 1, · · · , n− 1,

n+ 0.5(t−tn)
T−tn

, tn ≤ t ≤ T.

(13)

The resulting naive estimate of the mean value function Λ̂(t) in

Eq.(13) is obtained by plotting n event-occurrence time points

and connecting them by line segments.

When only one sample path, ti (i = 0, 1, 2, . . . , n), is available

in a single non-stationary Poisson process, the naive estimate

seems to be the straightforward but the most natural estimate

of the cumulative number of events, because the mean squares

error between the native estimate and the underlying time-

domain data is always zero. However, it should be noted that

the above the estimate of the intensity function is discontinu-

ous everywhere and tends to fluctuate with big noise.

3.3. Wavelet-based Estimator

Kuhl and Bhairgond [10] proposed a wavelet estimate based

on Eq. (7);

λ̂r,m(t; t) =2m
(
1− r
1 + r

)2 k∑
a=−k

{
n∑

i=1

Pr(2
mti − a)

}

× Pr(2
mt− a), (14)

where ti (i = 1, 2, . . . , n) are the time-domain data, the

parameter a is determined in the range in which the positive

basis function covers the entire time, and the resolution level

m is determined based on the detail of the approximation.

Unfortunately, Kuhl and Bhairgond [10] did not clarify the

derivation procedure of their wavelet estimate in Eq.(14). Here,

we derive the same result to complete the discussion, and

improve Kuhl and Bhairgond estimate [10].

Let λnaive(t) denote the naive estimate of intensity function

for a non-stationary Poisson process when T = tn;

λ̂naive(t) =
n∑

i=1

1

ti − ti−1
Ii(t), (15)

where

Ii(t) =

{
1, ti−1<t ≤ ti

0, otherwise.
(16)

Substituting the naive estimate λ(t) in Eq. (15) into Eq.(7),

we can obtain the naive wavelet estimate (NWE);

λ̂NWE(t; t) =

∫ ∞

−∞
kr,m(t, s)λ̂naive(s)ds

=

n∑
i=1

∫ ti

ti−1

kr,m(t, s)
1

ti − ti−1
ds

= 2m
(
1− r
1 + r

)2 n∑
i=1

∫ ti

ti−1

∞∑
a=−∞

Pr(2
mt− a)

× Pr(2ms− a) 1

ti − ti−1
ds

= 2m
(
1− r
1 + r

)2 ∞∑
a=−∞

{ n∑
i=1

1

ti − ti−1

∫ ti

ti−1

× Pr(2ms− a)ds
}
Pr(2

mt− a). (17)

Hence it is seen that the exact form of NWE contains the in-

tegral parts. If each integral is approximated by an elementary
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rectangular approximation method, which is given by

λ̂RNWE(t; t) = 2m
(
1− r
1 + r

)2 ∞∑
a=−∞

{
n∑

i=1

1

ti − ti−1

∫ ti

ti−1

×Pr(2mti − a)ds}Pr(2
mt− a)

= 2m
(
1− r
1 + r

)2 ∞∑
a=−∞

{
n∑

i=1

1

ti − ti−1

× (ti − ti−1)Pr(2
mti − a)}Pr(2

mt− a)

= 2m
(
1− r
1 + r

)2 ∞∑
a=−∞

{
N∑
i=1

Pr(2
mti − a)

}

× Pr(2
mt− a). (18)

We call the above estimate the rectangular approximate naive

wavelet estimate (RNWE), which is equivalent to Kuhl and

Bhairgond estimate [10]. Strictly speaking, RNWE is an

approximation of NWE from the computational point of view.

In order to compute λ̂NWE(t) more accurately, we need to

apply any numerical integration algorithm for Eq.(17).

4. TOOL DEVELOPMENT

Figure 2: Interface of Daube-WET (screenshot).

4.1. Daube-WET

We develop a Daubechies wavelet estimation tool for the

stochastic counting processes, Daube-WET 1, to estimate the

non-stationary Poisson process with unknown intensity func-

tion. In Figure 2, we show the interface of Daube-WET. The

Daube-WET is a web-based freeware without cumbersome

installation and complicated deployment, and is a unique

solution to support the wavelet-based estimation which is

applicable to not only the non-stationary Poisson process

estimation but also some signal processing problems. It runs

1https://DaubeWET.wujingchi.com

in a cloud computing environment and does not depend on the

kind of operating system.

4.2. System Architecture

The system process of Daube-WET is depicted in Figure 3. It

consists of two software components; the user interface (front

end) written by HTML, CSS, and JavaScript, the work end

(back end) written by PHP and Python language. The front-end

consists of two web pages; the main page and the estimation

page.

The main page contains the following functions:

• Upload dataset - Users can upload the time-domain

data using this function. The Daube-WET accepts text files

in “.txt format”. A sample data file with the correct format

can be downloaded with the upload button. Detailed data

format specifications are provided later. Before uploading

one data set, users need to select the data type first, either

event-occurrence time or event-occurrence time interval.

Subsequently, users can click on the upload button to upload

the data file. The uploaded event-occurrence time data will

be sent to the cloud server for data format validation. When

the data format is correct, it will be temporarily stored on

the cloud server and the server will then inform the user total

number of events and event-occurrence time length for the

given dataset (see Figure 4 (a)), which serves as verification

that the server has correctly read the data. If the data format

is incorrect, the user will receive an error message and the

line number in the text file where an error occurred (see

Figure 4 (b)). If the data format is correct but some of its

characteristics do not match the data type selected by the

user, the user will receive a warning message (see Figure 4

(c)).

• Select estimation method - Users can choose a

method for non-parametric estimation. The Daube-WET

provides three estimation methods; naive estimation, naive

wavelet estimation, and rectangular approximation naive

wavelet estimation (see Figure 5 (a)). When the wavelet

estimation or rectangular approximation wavelet estimation

is selected, additional estimation parameters are needed (see

Figure 5 (b)), so users need to input additional parameters.

• Input estimation parameters - Users can input

additional estimation parameters using this function. When

the wavelet estimation or rectangular approximation wavelet

estimation is selected, users must input the tuning pa-

rameter and the resolution level parameter. Selecting the

most appropriate tuning parameters and resolution level

parameters requires a certain amount of knowledge about

wavelets. However, since many users may not be well-

versed in wavelet methods, we have given a guideline

for recommended parameter values based on preliminary

experimental results (see Figure 5 (b)).

• Verify user input - The Daube-WET is a web-based

tool that allows public access. Hence, it may be intruded by

some malicious attacks, or misused by poor skilled users

who input some unexpected parameter values. The Daube-

WET can check automatically the estimation parameters
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Figure 3: System process of Daube-WET.

input by the user. When the estimation parameters entered

are not as expected, the user receives a corresponding

warning message (see Figure 6).

Once the user has uploaded the correct data file and selected

the estimation method with the estimation parameters, he/she

needs to click on the “Estimate” button on the main page to

open the estimation page (see Figure 7). The estimate page

has only two functions; confirmation of the options selected

on the main page and issue of an estimation report. On the

estimation page, the user can confirm the selected data type,

the uploaded data file, the selected estimation method, and

the estimation parameters. When the user confirms that the

above information was correct, he/she can click the “Estimate”

button on the page to start the estimation procedure. When

the estimate is completed, the original “Estimate” button will

change to “Download” button. The user can download the

estimation report issued by the Daube-WET after clicking the

“Download” button.

In the back end, we process the data sent from the front end,

estimate the intensity function, and output the estimation report

in “.xlsx form”. The following two modules are used in the

back end.

• Verification Module - The validation module ac-

cepts data files uploaded by users and validates them. The

details of the validation are presented in the description

of the “Upload Dataset” function on the main page. In

the Daube-WET, the specific validation code is written

in Python, and the PHP code is responsible for handling

the HTTP request and calling the corresponding Python

program.

• Estimation Module - The estimation module estimates

the intensity function based on the verified data, the es-

timation method, and parameters input by the user. As

with the validation module, the estimation algorithm and
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(a) Prompt for successful data format verification

(b) Prompt for failure data format

(c) Prompt for warning

Figure 4: Data format validation prompt (screenshot).

the report issue are written in Python. PHP is responsible

for handling the HTTP requests and calling the estimation

program written in Python. The estimation report is saved in

“.xlsx format”. The report contains the following informa-

tion; the original time-domain data, the intensity function

(estimated value), an estimate of the cumulative number of

events, information related to this estimate, an image of the

intensity function, and an image of expected the cumulative

number of events.

4.3. Data Format

In Daube-WET, we deal with the time-domain data and the

time interval data in text files in “.txt format”. Let x =
(x1, x2, . . . , xn) be the time interval data between the (i−1)-
st and i-th event occurrences, and y = (y1, y2, . . . , yn) be the

cumulative time data, where yi =
∑i

j=1 xj . In the Daube-

WET, it can handle either of both kinds of data; x or y.

The first line indicates the number of events. The second

row indicates the time interval between consecutive event

occurrences. Figure 8 presents the data format for x, where

the first column denotes the number of events, and the second

column does the time interval between consecutive two event

occurrences. Once the data set was uploaded after selecting the

data type, the format is checked with a verification function

to ensure whether the data format is correct or not.

4.4. Functionality

In Daube-WET, three estimation methods are prepared; naive

estimation, naive wavelet estimation, and rectangular approx-

imation naive wavelet estimation. The naive estimation is the

fastest and least resource-intensive among the three methods. It

generates an estimation report without additional input param-

eters. However, it is known that the intensity function obtained

from the naive estimation tends to overfit. The rectangular

approximation naive wavelet estimation is also relatively fast

but slower than the naive estimation. This is due to the large

number of recursive calculations required to obtain the values

of the Daubechies scaling functions. Using this method yields

a smoother and continuous intensity function compared to the

naive estimation. However, because it is an approximation of

the naive wavelet estimation, the estimated intensity function

is less accurate, i.e., it shows a higher mean absolute error

(MAE).

The naive wavelet estimation can provide a relatively more

accurate intensity function but requires appropriate values for

tuning parameter and resolution level parameter. It also needs

a much longer computation time than both naive estimation

and rectangular approximation naive wavelet estimation. For

example, when using the sample data file provided on the

Daube-WET website, it takes about 5 minutes to complete the

computation. The computation time increases with the number

of event occurrences. Table 1 describes the characteristics

of the three methods on computational efficiency. The more

detailed performance of the three methods will be shown in

the next section.

Whichever estimation method in the Daube-WET is selected

by the user, an estimation report in the same content is issued

for further analysis by the user; the original time-domain data,

the intensity function (estimate value) and its graph, the mean

value function (estimated from the intensity function) and

its graph, statistical information related to these estimates.

Regarding the original time-domain data, it simply outputs the

data file that the Daube-WET can read. As for the estimated

intensity function and the mean value function, we need to

make the following clarifications. Since the three estimation

methods provided by the Daube-WET are all non-parameter
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(a) Methods without additional parameter estimation

(b) Methods with additional parameter estimation

Figure 5: The estimation methods provided by Daube-WET (screenshot).

TABLE I: Features of different estimation methods in Daube-WET

Daube-WET

Method Name Naive Estimate
Rectangular approximation

Naive Wavelet EstimateNaive Wavelet Estimate

Computation time Very short Short Very long

Memory Usage Very low High High

MAE
Very low

High Low
(may over-fitting)

Additional parameters Not need Need Need

Figure 6: User input error prompt (screenshot).

estimation methods, we cannot provide some parameters as

parametric methods. We can only provide estimated intensity

values at pre-specified times. In particular, for the naive

wavelet estimation and the rectangular approximation naive

wavelet estimation, we calculate estimated intensity values at

100 equally spaced time points between t0 = 0 and tn, as

well as at each event-occurrence time ti (i = 1, 2, . . . , n).
Similarly, from the same reason, we cannot obtain the mean

value function at an arbitrary time by connecting the discrete

estimates of the intensity function and calculating the area

between the line connecting the points and the coordinate axis

as an approximation of the integral of the intensity function.

For the naive estimation, since it is discontinuous at the right

margin of event-occurrence time, we cannot only seek the

intensity values at 100 equally spaced time points and each

event-occurrence time. We need to additionally estimate the

intensity function at the right margin of each event-occurrence

time.

Finally, the mean absolute error (MAE) of the estimated mean
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Figure 7: Interface of estimation page (screenshot).

Figure 8: Sample data file formatted (screenshot).

value function is given in all estimation reports, where

MAE =

∑n
i=1 ‖i− Λ̃(yi)‖

n
, (19)

n is the number of events, yi is the i-th event-occurrence

time, and Λ̃(·) is an estimate of the mean value function. For

users who choose the naive wavelet estimation or rectangular

approximation naive wavelet estimation, the estimation report

shows the values of the tuning parameter and resolution level

parameter used in the estimation, as well as the Daubechies

wavelets employed for the analysis. The kind of Daubechies

wavelet is fixed to db4, which is an alias for the Daubechies

wavelets with a support width of 7 [3], and cannot be changed

at this time.

5. A CASE STUDY

In this section, we demonstrate how to use the Daube-WET

through an illustrative example. The sample dataset used in our

case study can be downloaded from the Daube-WET official

website. It consists of software fault-detection time data. It

is observed in an actual software development project and is

referred to as S2 in [12]. This data set consists of 54 time-

domain data during 108708 CPU seconds. To use the cumu-

lative failure time data, we simply select “Cumulative Failure

Time Data” in the “Data Type” field before uploading the data.

After uploading the data set, we select the estimation method.

In our case study, we chose the “Naive wavelet estimation” and

use the recommended parameter values (the tuning parameter

is set to 0.3 and the resolution level parameter is set to 7).

Next, when one clicks the “Estimate” button, the “Estimate

Page” appears. If we confirm that the options on the “Estimate

Page” are correct, click the “Estimate” button and wait for

the completion of calculations by the server. Once the server

finished the calculation, click the “Download” button to issue

the estimation report.

Even with the same dataset and the same method, the compu-

tation time required for each estimation method still varies

due to network fluctuations and server-available resources.

However, a benchmark for the computation time is useful

for users to check a rough computational effort when using

the Daube-WET. We used a sample dataset provided on the

official website and conducted each 10 experiments with three

methods, where the average time consumption of the 10

experiments represents the computation time overhead of the

three methods. The results are shown in Table II. Computation

time (total) refers to as average total time spent from clicking

the “Estimate” button to the appearance of the “Download”

button, including the time required for network transmission.

Computation time (actual) refers to as the actual running time

of the estimation program on the server side. MAE refers to

as average MAE results in the 10 experiments.

Figure 9 shows the original software fault-detection time

data, the intensity function (estimate value), and the mean

value function (estimated from the intensity function). Figure

10 clarifies the method used for estimation, the kind of

Daubechies wavelet, the values of the tuning, and resolution

level parameters. Figure 11 depicts the behavior of the inten-

sity function and mean value function.

6. CONCLUSIONS

In this paper we have developed a Daubechies wavelet es-

timation tool for the stochastic counting processes; Daube-

WET, as a web-based free application, which contained the

naive estimation method and two kinds of Daubechies wavelet

estimation methods to estimate the intensity function of non-

stationary Poisson process with the time-domain data. As an

advantage of the Daube-WET, it can run in a cloud computing

environment and is user-friendly, so the user can estimate

the intensity function via the official Daube-WET website

but does not need to configure any environment locally. The

Daube-WET has a strict verification function for the user’s

input, which minimizes the human errors caused by the users.

Since the naive wavelet estimation method requires a large

number of recursive operations to calculate the Daubechies

scaling functions and numerical integrations to calculate the

reproducing kernel function, it usually takes more than 10
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Figure 9: Estimation report 1 (screenshot).

Figure 10: Estimation report 2 (screenshot).

TABLE II: Estimation performance under a sample dataset

Method Name Naive Estimate
Rectangular approximation

Naive Wavelet EstimateNaive Wavelet Estimate

Computation time (actual) 133 ms 485 ms 342132 ms

Computation time (total) 4621 ms 5022 ms 346850 ms

MAE 0.222 13.81 1.181

minutes to complete the calculation, when using the naive

wavelet estimation method.
The estimation report issued by the Daube-WET is available

in an Excel sheet, which is easily utilized as the analysis

report. The estimation report contains four main elements;

original time-domain data, estimation values of intensity func-

tion, goodness-of-fit measure, and the graph of the estimation

values.
In the future, we will improve the computational perfor-

mance of the Daube-WET for the naive wavelet estimation

method. We will also propose another non-parametric esti-

mation method via Daubechies wavelets, replacing the naive

estimation by the kernel estimation.
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