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Abstract—Aspect-based sentiment analysis systems aim to

classify sentences according to specified aspects. Most pre-

vious studies have used graph convolutional networks (GCNs)

to analyze syntactic features and used word dependencies

for syntactic context and aspects. However, traditional GCNs

have limitations in exploring syntactic dependency graphs,

such as missing information on edges in syntactic dependency

trees. For accurate sentiment prediction on specific aspects, an

aspect-based sentiment analysis system using edge-enhanced

graph convolutional networks (Senti-EGCN) is developed.

In particular, a bidirectional long short-term memory (Bi-

LSTM) network is employed to extract the contextual features

of sentences. Thereafter, a transformer encoder with a self-

attention mechanism is used to analyze the interrelationships

and global features of words in long texts. Next, the Bi-LSTM

network is used to enforce the sentence structure through

the word dependency tree. The dependency tree analyzes

the words’ dependencies to enhance the representation of

information. A bidirectional GCN (Bi-GCN) uses message

passing to propagate information across the nodes in a parsed

dependency tree. In addition, an aspect-specific masking tech-

nique is applied to reduce redundant information in the hidden

representation by masking contextual information outside the

aspect and improve the accuracy. Finally, attention scores are

calculated in the last layer for sentiment classification. The

experimental results demonstrated that the proposed Senti-

EGCN outperforms other baseline models in most metrics on

the three benchmark datasets.

Keywords–Aspect-based sentiment analysis system; graph con-
volutional networks; syntactic dependency tree; aspect-specific
masking

1. INTRODUCTION

Aspect-based sentiment analysis [1] is a branch of sentiment

classification. The goal of the analysis is to classify sentences

according to specified aspects. A sentence has various aspects,

and the sentiment of each aspect may belong to a different

category. Sentiment analysis systems for aspects have a wide

range of application in practice. For example, a customer

comments in the review system of a restaurant: “The menu

is limited, but all the food taste good.” If the “menu” is

considered as the aspect, then the sentiment of the customer is

negative (i.e., “limited”). However, when “food” is considered

as the aspect, the sentiment is positive (i.e., “good”). When

significant contextual information for each aspect of the text is

not well captured, aspect-based sentiment analysis system may

make incorrect predictions. Therefore, the correct classification

of text in such a system can help analyze user demands and

thus provide better services to users.

Nowadays, deep learning-based natural language processing

models are being used in aspect-based sentiment analysis

systems to model the various aspects of contextual information

in texts. The effectiveness of these neural networks (e.g., recur-

rent neural networks (RNNs) and Transformer) has also been

demonstrated [2, 3, 4]. However, these models cannot capture

the syntactic dependencies between word pairs and aspects

well. For example, the contextual word (e.g., “taste good”)

associated with a specific aspect (e.g., “food”) should earn a

higher attention score. Although adding syntactic constraints

to attention mechanisms is effective to a certain extent, this

issue has still not been fundamentally addressed. In addition,

as a phrase sometimes determines the sentiment of a sentence

more than a word, convolutional neural networks (CNNs) can

also be used to identify the aspects of descriptive multiword

phrases. For example, the phrase “a bit more friendly” in the

sentence “The staff should be a bit more friendly” has a long-

term dependency on the subject “staff.” The aspect of the

sentence can be better described. However, traditional CNNs

cannot well determine the sentiment depicted by non-adjacent

multiple words owing to the limitation of the local receptive

field.

The tree structure of dependency trees in graph convolutional

networks (GCNs) can shorten the distances among the various

aspects of a sentence and its associated words. Moreover,

it provides a discriminable syntactic path for the text to

propagate information through the tree. Hence, a dependency

tree can capture the syntactic relationships among words in

an efficient structure. These features of dependency trees can

allow deep learning approaches to effectively capture long-

range dependencies. Therefore, the representation of nodes and

their positional relationships in graphs can be learned using

the dependency tree of GCNs. That is, a GCN can project

the syntactically relevant words to the target aspect through

the syntactic dependency tree. However, although the edges in

the syntactic dependency tree contain structured information

722

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/23/$31.00 ©2023 IEEE
DOI 10.1109/DSA59317.2023.00103



Figure 1. Example of spurious associations of a customer review system.

about the graph, they are not used in GCNs.

The complexity of natural language syntax and semantics may

lead to spurious associations between aspects and contexts.

Deep learning approaches with GCNs that lack edge infor-

mation are more prone to making wrong predictions. Figure

1 provides an example of a customer review of a restaurant

to explain the spurious associations that exist in aspect-based

sentiment analysis systems. A high association exists between

the contextual word “never had” and the sentiment polarity

label “Positive” in historical reviews, even without considering

the aspect words. However, the sentiment label of the review

by the new customer is not “Positive.” Therefore, the trained

sentiment classifier cannot discriminate the association be-

tween “never had” and the sentiment label “Neutral” in the test

instance. Furthermore, the deep models of such systems are

more limited in their ability to extract feature representations

for long texts, which significantly reduces the robustness and

generalization ability of the models.

Inspired by the above mentioned limitations, we propose

an aspect-based sentiment analysis system using the edge-

enhanced GCN (Senti-EGCN), which operates on the depen-

dency trees of sentences for the accurate sentiment analysis

of specific aspects. In particular, the Senti-EGCN first gains

the node embeddings of words through a bidirectional long

short-term memory (Bi-LSTM) network and then uses a Bi-

GCN to model the structure of sentences through dependency

trees of words. Furthermore, the dependency tree enhances

the information representation of words by analyzing their

dependencies. The Bi-LSTM captures and extracts the features

of contextual information between consecutive words. The

Bi-GCN follows the syntactic path of a dependency tree to

enhance the embedding by modeling dependencies. The infor-

mation can be transferred from the context to the target aspect,

which indicates that the encoding of the target aspect can be

used for sentiment classification. The major contributions of

this study are summarized as follows:

• A novel hybrid architecture: The Bi-LSTM, transformer,

and edge-enhanced Bi-GCN are employed in an aspect-

based sentiment analysis system. The Senti-EGCN uses

the syntax between words to construct a graph and then

obtains the representation of the text through the graph

neural network.

• Enhanced semantic edges: Using a dependency tree short-

ens the distance between aspects and associated words and

also provides a syntactic path for the text. Furthermore, the

edge information of syntactic dependency trees is consid-

ered in the Senti-EGCN. Such information can enhance the

syntactic projection between the associated words and the

target aspect.

• Superior performance: The effectiveness of the proposed

approach is validated on three benchmark datasets. The ex-

perimental results demonstrate that the Senti-EGCN model

outperforms other baseline models in most metrics.

2. RELATED WORK

2.1. Aspect-based Sentiment Analysis Systems

Aspect-based sentiment analysis systems are a branch of

natural language processing. In earlier studies in this context,

a set of features (e.g., bag-of-words features and sentiment

dictionary features) have been extracted to train sentiment

classifiers. The rule-based and statistical-based approaches [5]

are commonly used, which rely on labor-intensive feature

engineering. Typically, an aspect-based sentiment analysis

system consists of four main tasks. The first task is called

the aspect term sentiment analysis (ATSA), which aims to

identify the sentiment polarity of the specified aspect terms in

a sentence. The ATSA is usually modeled as a classification

problem. The aspect category is a predefined set that describes

the things implicitly expressed in a sentence. Aspect category

sentiment analysis (ACSA), the second task, aims to identify

the sentiment polarities of specified aspect categories in a

sentence. ACSA is also a classification problem. The other

two tasks, aspect term extraction (ATE) and aspect category

extraction (ACE) are inverse tasks of the first two tasks. ATE

in a given sentence can be modeled as a sequence labeling

problem. ACE aims to identify predefined aspect categories

in sentences describing things, which is usually modeled as a

multilabel classification problem.

2.2. RNN-based Sentiment Analysis Systems

In recent years, with the successful application of deep learn-

ing in various fields, more and more researchers have started

to use deep learning to solve problems [6, 7, 8]. LSTM

[9] is the most basic deep learning model for aspect-based

sentiment analysis systems. It extracts the features of the

current subsequence to feed into the next time step. The

hidden-layer features of the last time step are used as the

input of the classifier for sentiment classification. TD-LSTM

[10] uses a Bi-LSTM to learn the dependency between the

context and target. ATAE-LSTM [2] combines an LSTM with

an attention mechanism and embeds aspects in the calculation

of attention weights. RAM [3] combines a Bi-LSTM and

multiple attention mechanisms. TNet-LF [11] is a Bi-attention
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mechanism model that learns the attention weights of contexts

and aspect words interactively.

A transformer is powerful in capturing and extracting long-

range dependency features of long sequences. It calculates

the attention score for the current word and all the words

in the sentence. Therefore, it can directly capture long-range

dependent features without the need to pass back the sequence

of hidden-layer nodes similar to an RNN or increase the

network depth to capture long-range features similar to a CNN.

Furthermore, a transformer has parallel computing capability

and does not need to rely on the features of previous time

steps.

2.3. GCN-based Sentiment Analysis Systems

GCNs are a type of deep learning model that can effectively

capture the relationships between the entities in a graph.

ASGCN [12] was the first GCN that modeled the relationships

between aspects and other entities in the input text, which

effectively captures the sentiment polarity of specific aspects

and improves the performance of aspect-based sentiment anal-

ysis systems. Inspired by the advantages of the Bi-LSTM,

transformer, and GCNs, in this paper, we propose a hybrid

deep learning model for aspect-based sentiment analysis. Con-

cretely, a Bi-LSTM is used to extract the deep features of

sentences. A transformer encoder with self-attention guides

model learning from a global viewpoint. A bi-GCN with a

dependency-parsing layer aims to learn the graph features of

syntactic dependency tree.

3. SENTI-EGCN MODEL

3.1. Overview

Figure 2 demonstrates an overview of the proposed Senti-

EGCN sentiment analysis system. The Senti-EGCN primarily

consists of seven submodules: (a) A word embedding layer

parses sentences and embeds words into the vector space; (b)

A Bi-LSTM network captures the contextual information of

sentences; (c) A transformer with a self-attention mechanism

analyzes the interrelationships and global features of words

in long texts; (d) A dependency-parsing layer identifies the

dependencies among words in a sentence and creates a depen-

dency tree; (e) A Bi-GCN uses message passing to propagate

information across the nodes in the parsed dependency tree;

(f) An Aspect-specific masking layer reduces redundant in-

formation in the hidden representation by masking contextual

information outside the aspect and improves the accuracy of

the system; (g) A sentiment classification layer aims to classify

the sentiment of a given sentence into one of several predefined

categories, typically positive class, negative class, or neutral

class.

3.2. Word Embedding Layer

A sentence composed of n words containing an m-word aspect

can be tokenized as a sequence S as follows:

S = {w1,w2, · · · ,wγ , · · · ,wγ+m, · · · ,wn} , (1)

where w ∈ S denotes the word token and γ denotes the

starting index of an aspect. Each word token is embedded

into a low-dimensional vector eγ ∈ R
dw and here dw is the

dimension of the word embedding.

3.3. Bi-LSTM

Word embedding vectors are then used as the input to the

Bi-LSTM network. The Bi-LSTM is employed to capture the

contextual information of sentences. In general, a Bi-LSTM

network consists of two submodules, i.e., the forward and

backward LSTMs. For the forward LSTM, the hidden vector−→
h LSTM

t of the current time step is calculated based on the

input embedding et and
−→
h LSTM

t−1 of the previous time step.

The backward LSTM is constructed using et and
←−
h LSTM

t+1 of

the next time step. Finally,
−→
h LSTM

t and
←−
h LSTM

t are con-

catenated into the hidden vector hLSTM
t . The corresponding

calculations are as follows:
−→
h LSTM

t = LSTM(et,
−→
h LSTM

t−1 ),
−→
h LSTM

t ∈ R
dh , (2)

←−
h LSTM

t = LSTM(et,
←−
h LSTM

t+1 ),
←−
h LSTM

t ∈ R
dh , (3)

hLSTM
t =

−→
h LSTM

t ⊕←−h LSTM
t , hLSTM

t ∈ R
2×dh , (4)

where dh denotes the hidden-layer dimension of the Bi-LSTM

and ⊕ is the concatenation operator.

3.4. Transformer

A transformer encoder with a self-attention mechanism is em-

ployed to analyze the interrelationship and global features of

words in long sentences. The sequential positions of a sentence

are input to the sinusoidal positional encoding functions, which

are given by

Ppos,2i = sin(
pos

10000
2i

dmodel

), (5)

Ppos,2i+1 = cos(
pos

10000
2i

dmodel

), (6)

where pos is the position of a word in a sentence and i denotes

the ith dimension of the embedding with the dimension

dmodel. Thereafter, the superposition vector of the embedding

and positional encoding of the input sentence is used as the

input of the transformer. A transformer calculates attention

weights as follows:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V , (7)

where Q, K, and V denote the query, key, and value matrices

with the dimensions dk, dk, and dv . Typically, a transformer

uses a multihead attention mechanism to project the query, key,

and value matrices h times to enhance the internal association

of contexts with the following formulas:

Multihead(Q,K,V ) = [Head1, · · · ,Headh]W , (8)

Headi = Attention(QWQ,KWK ,V W V ). (9)
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Figure 2. Overview of the Senti-EGCN architecture for the aspect-based sentiment analysis system.

In the above W , WQ, WK , and W V indicate the weight ma-

trices of the self-attention mechanism. Next, the transformer

encoder applies two normalization layers to extract the deep

features of the context.

Let Zout be the output matrix of the transformer encoder, and

it can be formulated as

Zout = Transformer(S). (10)

Finally, the calculated global attention scores are used in the

final sentiment classification layer.

3.5. Dependency-parsing Layer

The output hidden vector ht of the Bi-LSTM network is used

as an input to the dependency-parsing layer of a Bi-GCN, and

the dependencies among words in a sentence are identified by

creating a dependency tree.

Formally, the Bi-GCN initializes a matrix to store the weights

indicating the edge information. First, the adjacency matrix of

A ∈ R
n×n is obtained from the dependency tree of a given

sentence. The traditional adjacency matrix can be specified as

follows:

Aij =

⎧⎪⎨
⎪⎩
1, i = j

1, i �= j, i and j have dependencies

0, otherwise

. (11)

However, owing to the discrete representation of the adjacency

matrix (i.e., 0 and 1), a GCN cannot effectively capture

the more rich edge information. Therefore, the adjacency

matrix containing nondiscrete edge information is proposed

as follows:

Aij =

⎧⎪⎨
⎪⎩
1, i = j

SDI(i, j), i �= j, i and j have dependencies

0, otherwise

,

(12)

where SDI(i, j) represents the function of syntactic depen-

dency information between the words i and j. SDI can be
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calculated as shown below.

SDI(i, j) =
Count(sd(i, j))

Count(sd(·)) , (13)

where sd(i, j) and sd(·) denote the syntaxes of the word pair

i and j and dataset, respectively.

3.6. Bi-GCN

A GCN is a variant of CNN that can be used to encode

the information of structured graph data. For a given text

graph with n words, an adjacency matrix can be obtained

by searching the syntactic matrix A ∈ R
n×n for syntactic

dependency information. The output of word i at layer l is

hl
i. The graph is represented as follows:

hl
i = σ(

n∑
j=1

ÃijW
lhl−1

j + bl), (14)

where W l denotes the weight of the linear transformation, bl

indicates a bias value, and σ represents a nonlinear activation

function (e.g., sigmoid or tanh function). In a GCN, the

sentence’s dependency tree offers syntactic constraints for an

aspect of a sentence to determine the descriptive words based

on syntactic distance. The GCN can handle the case where

noncontiguous words describe the polarity of an aspect. Thus,

the GCN is selected for aspect-based sentiment analysis. Here,

we use the Bi-GCN to update each word’s representation with

the following equation:

−→
h l

i =
n∑

j=1

ÃijW
lhl−1

j , (15)

←−
h l

i =
n∑

j=1

Ã
T

ijW
lhl−1

j , (16)

where
−→
h l

i and
←−
h l

i denote the forward and backward repre-

sentations of the word i in lth layer, respectively. Finally, the

two representations are concatenated by

h̃
l

i =
−→
h l

i ⊕
←−
h l

i, (17)

hl
i = ReLU

(
h̃
l

i

di + 1
+ bl

)
, (18)

here di is the degree of the ith token in the adjacency matrix.

It should be noted that the weight W l and the bias bl are

trainable parameters.

3.7. Aspect-specific Masking Layer

Aspect-specific masking layer can reduce redundant informa-

tion in the Bi-GCN hidden representation by masking the

non-aspect text. Concretely, the aspect-specific masking can

be represented as

hl
i = 0, 1 ≤ i < γ, γ +m− 1 < t ≤ n. (19)

The output of the zero mask layer is aspect-oriented features:

H l
mask =

{
0, · · · ,hl

γ , · · · ,hl
γ+m−1, · · · ,0

}
. (20)

With the graph convolution, the feature H l
mask has a per-

ceptual context around aspects while considering syntactic

dependencies and long-range multiword relations. In addition,

the attention mechanism can be used to obtain a vector

representation of the hidden layer. The attention weights are

calculated as follows:

βi =
n∑

j=1

hT
jh

l
j , (21)

αi =
exp(βi)∑n

j=1 exp(βj))
. (22)

Finally, the sum of the above representation scores and atten-

tion scores of the transformer are used for the classification

of sentiments as follows:

rout =
n∑

i=1

αihi +Zout. (23)

3.8. Sentiment Classification Layer

The rout calculated in the previous layer is used as an input

to the fully connected layer for sentiment classification as

follows:

p = softmax(W prout + b). (24)

3.9. Training

Owing to the cross entropy and L2 regularization, the loss

function of the Senti-EGCN is designed as follows:

Loss = −
∑
p̂∈C

log pp̂ + λ ‖Θ‖2 , (25)

where p̂ and C indicate the label and dataset, respectively, pp̂

represents the p̂th element of p, and Θ and λ are the trainable

parameters and coefficient of the L2-regularization. For a

better understanding of the Senti-EGCN model, Algorithm 1

shows the training and testing processes of the proposed Senti-

EGCN model.

4. EXPERIMENTS

We conducted experiments to demonstrate the usefulness of

our presented Senti-EGCN model. Three benchmark datasets

(i.e., Rest14 [13], Rest15 [14], and Rest16 [15]) are used for

the evaluation.

4.1. Datasets

The three benchmark datasets contain comments and rating

information of customers for restaurants. Specifically, the

Rest14 dataset consists of a total of 4,728 customer comments.

The numbers of data used for training and testing are 3,608

and 1,120, respectively. The Rest15 dataset contains a total of

1,746 reviews. In particular, 1,204 customer review messages

are used for training and 542 are used for testing. Rest16 is

the benchmark dataset for 2016 and includes 2,364 reviews.

The number of training data used are 1,748. The remaining

616 reviews are testing data. Based on previous studies, we

deleted text that had conflicting polarity or unclear meaning in

the sentences of Rest15 and Rest16 datasets. Table I describes

the statistics of the three datasets in detail.
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Algorithm 1: Procedures of the Senti-EGCN.

// Read sample sentences from datasets
// A word embedding layer

1 Tokenize a sample sentence with Eq. (1).

2 Embed word tokens in the word embedding layer.

3 Perform dependency analysis for the sample sentence.

// A Bi-LSTM layer
4 Capture the contexual features of the sample sentence

using a Bi-LSTM layer with Eqs. (2)–(4).

// A transformer layer
5 Encode positions for the transformer encoder layer using

Eqs. (5) and (6).

6 Use a transformer encoder to capture the global features

of sentences using Eqs. (7)–(10).

// A dependency-parsing layer
7 Replace the weight matrix (11) using Eq. (12) to store

more edge information of a graph.

8 Compute SDI using Eq. (13).

// A Bi-GCN submodule
9 Employ a Bi-GCN submodule to extract the features of

the structured graph using Eqs. (14)–(18).

// An aspect-specific masking layer
10 Reduce redundant information in a Bi-GCN using the

aspect-specific masking technique using Eqs. (19))–(23).

// A sentiment classification layer
11 Construct a classifier by applying fully connected layers

to classify sentiments using Eq. (24).

// Model training
12 Train the Senti-EGCN model using Eq. (25).

// Testing
13 Evaluate the performance of the proposed model using

the test dataset.

TABLE I
THE STATISTICS FOR THE THREE DATASETS.

Dataset # Positive # Neutral # Negative

Rest14

Train 2,164 637 807

Test 728 196 196

Rest15

Train 912 36 256

Test 326 34 182

Rest16

Train 1,240 69 439

Test 469 30 117

4.2. Experimental Setting

Pretrained GloVe vectors [16] are used in the experiments

as initialization vectors for the word embedding layer. The

dimensionality of the word embedding and hidden layer of

Bi-LSTM is 300. The number of Bi-GCN layers is 3. The

weights in the model are initialized with uniform distribution.

Additionally, the Adam optimizer with a learning rate of 0.001

is used to optimize the proposed Senti-EGCN model. The

L2-regularization and batch size for training are set to 10−5

and 32, respectively. During the training phase, Senti-EGCN

performs up to 100 epochs.

4.3. Baselines

The proposed Senti-EGCN model is compared to a range of

baseline models to evaluate its effectiveness. Baseline models

are described as follows:

• SVM: The support vector machine (SVM) is a machine

learning model applied on SemEval 2014 task 4 using the

traditional methodology for feature extraction.

• LSTM [9]: The hidden-layer vector of the last time step of

the LSTM is used for sentiment classification.

• TD-LSTM [10]: The target-dependent LSTM (TD-LSTM)

extracts the interaction features between the target sentiment

and whole context for sentiment prediction.

• MemNet [17]: MemNet uses textual information as an

external memory and obtains sentence representations using

deep memory networks with word embeddings.

• AOA [18]: Attention-over-attention neural networks (AOA)

is a neural network-based deep learning model that uses the

attention-over-attention mechanism to improve the classifi-

cation.

• IAN [11]: Interactive attention networks (IAN) use two

LSTM variants to extract the representations for aspect

terms and contexts separately. Thereafter, the IAN concate-

nates the context representations and aspects.

• TNet-LF [19]: TNet-LF uses a forward context-preserving

transformation to save and enhance the information part of

the context.

• ASGCN [12]: The first aspect-specific graph convolutional

network (ASGCN) uses a GCN to analyze the sentiment of

graph-based aspects.

• MGAN [4]: Multi-grained attention network (MGAN) aims

to identify the sentiment expressed towards specific aspects

or entities in a given text.

• Sentic LSTM [20]: Sentic LSTM uses an aspect-specific at-

tention mechanism, a commonsense knowledge embedding

module, and an attentive LSTM for sentiment analysis.

4.4. Evaluation Measures

The accuracy value (Acc) and Macro F1 score (F1) are used

to test and validate the performance of the proposed Senti-

EGCN. Acc and F1 are the commonly used measures in

multiclassification tasks, which intuitively qualify the model

capability of prediction and classification. In particular, Acc is

the ratio of correctly classified samples and F1 is the weighted

average of the accuracy and recall. Formally, Acc and F1 are

computed as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (26)
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TABLE II
AVERAGE ACCURACY AND MACRO-F1 SCORE RESULTS OF THE PROPOSED MODEL IN COMPARISON WITH BASELINES.

Model
Rest14 Rest15 Rest16

Acc (%) ↑ F1 (%) ↑ Acc (%) ↑ F1 (%) ↑ Acc (%) ↑ F1 (%) ↑

SVM 80.16 – – – – –

LSTM 78.13 67.47 77.37 55.17 86.80 63.88

TD-LSTM 78.00 66.73 76.39 58.70 82.16 54.21

MemNet 79.61 69.64 77.31 58.28 85.44 65.99

AOA 79.97 70.42 78.17 57.02 87.50 66.21

IAN 79.26 70.09 78.54 52.65 84.74 55.21

TNet-LF 80.42 71.03 78.47 59.47 89.07 70.43

ASGCN 80.86 72.19 79.34 60.78 88.69 66.64

MGAN 81.25 71.94 79.36 57.26 87.06 62.29

Sentic LSTM 79.43 70.32 79.55 60.56 83.01 68.22

Senti-EGCN 81.70 73.63 79.343rd 61.99 88.802nd 68.962nd

� The values highlighted in bold represent the maximum values of the corresponding columns. The “2nd” and “3rd” indicate the second and third maximum
values attained within the respective columns, respectively.

Precision =
TP

TP + FP
, (27)

Recall =
TP

TP + FN
, (28)

F1 = 2× Recall× Precision

Recall + Precision
, (29)

where TP indicates the counts of true-positive samples, and

TN represents the counts of true-negative samples, while FP,

and FN denote the false-positive and false-negative samples,

respectively.

4.5. Results

Table II presents a comparison of the Acc and F1 scores of the

proposed Senti-EGCN model with the other 10 baseline mod-

els. The Senti-EGCN model outperforms the other baseline

models for most measures on the Rest14, Rest15, and Rest16

datasets. The Senti-EGCN model performs the best on the

Rest14 dataset, with the Acc and F1 scores significantly higher

than the other baseline models. On the Rest15 dataset, Sentic

LSTM had the highest Acc score (i.e., 79.55), but its F1 score

was low at 60.56%, which is quite smaller than Senti-EGCN

(i.e., 61.99%). On the Rest16 dataset, the Acc and F1 scores of

TNet-LF were only slightly higher than those of the proposed

Senti-EGCN. A possible reason is that the feature vectors

of the parent nodes is as critical as the features originating

from the sub-nodes, and relying on the tree to be processed

as a directed graph leads to loss of information. The results

indicate that the Senti-EGCN model achieves results that are

comparable to those of the TNet-LF model on the REST16

dataset. The Senti-EGCN model outperforms the ASGCN on

all datasets, indicating that word dependencies can improve

classification results.

In summary, the proposed Senti-EGCN model performs well

on the Acc and F1 measures on the three bechmark datasets,

which demonstrates the usefulness and effectiveness of the

Senti-EGCN model.

5. CONCLUSION

In this paper, we presented an aspect-based sentiment analysis

system using an edge-enhanced bidirectional graph convolu-

tional network. The Senti-EGCN model uses Bi-LSTM to

learn the syntax and semantics of the text, and the features

of its hidden layer are used for syntactic dependency tree

building in the Bi-GCN. Furthermore, a transformer encoder

layer extracts global information from the text and is used

to improve the ability of the Senti-EGCN to capture features

in long texts. The dependency-parsing layer in the Bi-GCN

extracts the graph structure of the syntax of texts and learns

the association between aspect and context. Thereafter, the

aspect-specific masking layer is used to reduce the redundant

information in the hidden layer of the GCN and improve the

accuracy of the analysis system. Finally, the outputs of the Bi-

GCN and transformer are used as the inputs of the classifier

for sentiment classification.

In the future, we will investigate more advanced feature extrac-

tion techniques, such as utilizing pre-trained language models
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such as BERT or GPT, to capture richer semantic information

and further improve Senti-EGCN’s ability to understand the

nuances of complex text. In addition, we will extend the Senti-

EGCN model to support multiple languages (e.g., Chinese and

Japanese languages) to enable cross-lingual sentiment analy-

sis. This may require adapting the model’s architecture and

training procedures to effectively handle different linguistic

constructs.
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