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Abstract—Systems under operation come with risks, i.e., a

likelihood that a fault causes unwanted events or even harm.

In the case of safety-critical systems like cars or airplanes,

identifying and mitigating risks is essential for avoiding such

critical events. Measures for mitigation, including monitoring

and property checking, also come with risks. Not being able

to classify a failure correctly or coming up with errors or

warnings without reason may cause trouble, too. Therefore,

it is evident to analyze the remaining risks (i.e., the residual

risks) and compare them with the original ones. This paper

presents a framework for analyzing such risks, show their

application when introducing monitoring and mitigation, and

presents a case study using concrete values.

Keywords–Risk and reliability analysis; fault diagnosis and
detection; dynamic fault trees

1. INTRODUCTION

Risk in a technical system, can be decreased by risk avoidance,

or risk reduction [1]. The latter approach does so by reducing

the probability and/or severity of a certain unwanted event

and its outcome. Examples of such risk reduction measures

are the introduction of redundancies and automated fault cor-

rection/mitigation strategies. After introducing risk reduction

measures there is still a risk remaining, i.e., the residual risk,

which should be smaller than the original risk without applying

risk reduction measures.

In order to perform such automated correction or mitigation,

an underlying fault has to be diagnosed or at least detected.

Model-based diagnosis (see e.g., [2], [3] or more recently [4])

is one of the many research fields around detecting, isolating,

and diagnosing faults in technical systems in an automated

fashion. For an overview, we refer the interested reader to the

literature surveys of Venkatasubramanian et al. [5] and Gao

et al. [6]. Other work include monitoring for failure detection,

i.e., [7], which gained attention with the increasing interest in

autonomous driving. There identifying critical scenarios and

mitigating their negative effects is important for preventing

people from harm.

A wide variety of metrics and attributes are used in model-

based diagnosis literature and research. Ranging from quanti-

tative and well-defined metrics as for example, “accuracy”[5],

[8], [9], “misdetection rate”[8], [10], “false alarm rate”[11],

[8], [10]. To more abstract and qualitative attributes as for

example, “coverage”[12], [8], “robustness”[5], [8] or even

“diagnostic performance”[6]. However, none of these metrics

and attributes intuitively translate into a quantifiable risk

reduction.

Risk assessment and analysis are performed in order to identify

sources of risk and to select areas and parts to be treated with

risk reduction measures. Further, such analysis is then applied

to evaluate and quantify the performance of implemented risk

reduction measures, and their effects on residual risk. The

concepts of coverage [13] and coverage models [14] are used

to model risk reduction measures.

The risk analysis approach based on the coverage [13] metric

combines diagnostic recall and the effectiveness of the cor-

responding mitigation into one parameter but is oblivious to

false positives and their effects. Quantitative diagnostic perfor-

mance metrics for diagnostic systems, for example, “accuracy”

and “false alarm rate”, do not encompass the corresponding

mitigation actions and any information on their effectiveness

and associated risks.

To bridge this gap between the world of risk analysis and

automated fault diagnosis we create a simple risk/reliability

model to link these detection/diagnosis performance metrics

to the achievable risk reduction in a quantifiable manner. We

create a scalable model comprised of abstract representations

of a component and its diagnostic monitor using Dynamic

Fault Trees (DFT) [15]. Further, we discuss the different

types and sources of risks in such a system. We use this

model to analyze and catalog the various states, failure modes,

and resulting risks occurring in such a system, and perform

rudimentary sensitivity analysis.

We see two main use cases for our model: First, for the

creation and analysis of performance requirements for diag-

nostic systems and corresponding mitigation actions. Second,

to catalog failure modes and to serve as a starting point for

in-depth risk analysis of a system incorporating automated

diagnostic and mitigation.

We demonstrate how a parameterized model can be used

to connect its diagnostic monitors’ performance metrics and

mitigation strategies to quantifiable risk metrics. Our model

is scalable and modular while still open to more detailed risk

analysis once more information is available on the modeled

system.

We organize this paper as follows: First, we discuss related

research work in the context of reliability and diagnosis.

Afterward, we discuss the background behind our work and

give an example. We continue describing the modeling prin-

ciples and the model. Furthermore, we outline details of an

implementation and obtained results. Finally, after discussing

limitations and the threats to validity, we conclude the paper.
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2. RELATED WORK

Bouricius et al. [13] introduced the coverage parameter defined

as C = P (system recovers|fault occurs) to model the self-

repair and fault tolerance qualities and capabilities of a system.

Coverage, by definition, combines diagnostic performance in

terms of recall and the corresponding mitigation effectiveness

in a single parameter. Since then, the concept of coverage has

been well adopted in the field of risk and reliability analy-

sis, and its implications and applications have been actively

researched. Dugan et al. [14] discusses different coverage

models and their application to compute/estimate the coverage

parameter, including sensitivity analysis of coverage regarding

different error handling strategies. Doyle et al. [16], [17]

discusses the application and combination of coverage models

to reliability and dependability assessment approaches. Amari

et al. [18] on finding optimal configurations of systems with

imperfect coverage. An example of the practical application

of the coverage parameter and the utilization of the coverage

parameter in DFTs is shown by Ghadhab et al. [19].

However, its lack of expressiveness regarding misdetections/-

false positives, and the inseparableness from mitigation effec-

tiveness, inhibit its use in the field of automated fault detection

and diagnosis.

The metrics popular in the field of automated fault detection

and diagnosis, e.g. accuracy and false positive rates [5],

[8], [9], [11], [10], are not directly applicable to perform

risk/reliability assessment of a system, as they do not consider

mitigation effectiveness or mitigation risks. For example, the

papers referred to in Habibi et al.’s [20] survey on reliability

improvements through model-based fault detection, deal with

reliability on a rather abstract level instead of quantitative

reliability analysis.

It is important to note here that the concept of “coverage” as

used in the context of automated fault diagnosis [12], [8] is

different and unrelated from the “coverage” parameter used in

risk and reliability analysis [13].

This paper differs from the above mentioned papers in the

following: We want to investigate the types of risks and

sources of risks in a system using automated fault diagnosis for

risk reduction. We want to bridge the gap between diagnostic

performance and system residual risk, and system reliability.

We want to enable quantitative analysis of system residual risk

and system reliability. We do so primarily from the standpoint

of fault diagnosis and detection.

3. BACKGROUND

Fault trees are well known and in widespread use for risk and

reliability analysis of technical systems. This is largely owed to

their ease of use, resulting from intuitive representation using

directed acyclic graphs to model failure propagation through

a system [21].

However, static fault trees have limited modeling capabilities

when it comes to dynamic and temporal aspects of a system.

Examples are the order of events and the concept of dormancy.

While such behaviors can be represented using Markov mod-

els, such models suffer from state explosion and are difficult

to manually create [22].

Dugan et al. [22] proposed Dynamic fault trees that enable

modeling dynamic and temporal behaviors using special gates

in fault trees. The following gates are introduced in the original

publication: Priority-And gate, where the output occurs only

if both inputs occur, and the left input occurred before the

right input. Sequence-Enforcing gate enforcing an order of

occurrence of its inputs, in the sequence of left to right inputs.

Functional-Dependency gate, where the dependent events are

forced to occur if the trigger event occurs. Cold-Spare gate,

where the spare unit is considered dormant, therefore can not

fail, before it is activated by the trigger event on the input.

Multiple spares can be connected to the same gate, becoming

active only if the previous spare has failed. The output of the

gate occurs once all spares have failed. It is important to point

out the difference between occurrence and activation, the latter

describing that the respective component is from this point on

subject to its failure probability. Hot-Spare gate, where the

spare units are active, and therefore can fail according to their

given failure before the triggering event occurs. Warm-Spare
gate, where the spare units are subject to a certain failure rate

while not being activated.

Later extensions include: Priority-Or gate, where the output

occurs if the left fails before the right input [23]. One-
shot Probabilistic Depencency gate, as a modified func-

tional dependency gate that allows specifying a probability

for triggering the failure of the dependent events[24], [25].

Persistent Probabilistic Depencency gate, that increases the

failure probability of the dependent events by a specified

amount[25]. Mutex gates, to define events to be mutually

exclusive. While such exclusions can be modeled using basic

DFT gates [26], they are often depicted as dedicated gates for

sake of clarity.

However, there are limitations to dynamic fault trees. Dugan

et al. [22] based his proposed DFT modelling approach on

following assumptions: Faults are considered to be random and

statistically independent, failure rates are assumed constant,

mission times are to be short, and repairs during system

runtime are not considered. Junges et al. [26] investigated

scopes, coverage, and semantics of different flavors of dynamic

fault trees discussing problems such as undefined behaviors.

The introduction of Priority-Or and Not gates can lead to non-

coherent dynamic fault trees, in which the occurrence of an

event results in situations where the output of a gate can go

from True to False again [27], [26].

In this work, we limit ourselves to the use of only basic

gates, as to keep our proof-of-concept model independent of

implementation and semantic differences of the various flavors

and tools for analyzing dynamic fault trees.

Multiple approaches to quantitative analysis of dynamic fault

trees have been investigated, including, but not limited to

algebraic [28], Markov chains [15], dynamic Bayesian net-

works [29], and Monte Carlo simulation [30]. For our quan-

titative analysis and simulation of our models we use the
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Figure 1. Gates and components of our dynamic fault trees.
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Figure 2. Exmplary system with a single pump, and with a backup pump.

probabilistic model checker Storm [31], due to the project’s

maturity level, availability, good documentation, and open

source license.

4. EXAMPLE

Figure 2a shows a simple system a pump and its consumer.

The pump is powered by variable-frequency drivers. There

are sensors on the pumps’ output, measuring its transport

volume, and on the output of the variable frequency drive.

The controller for the system is connected to all sensors and

the driver over a bus. The goal of the system is to provide a

constant flow of liquid to the consumer.

We assume the system to fail by not meeting the goal, when

either the pump, controller, or the driver fail.

Figure 2b extends upon the previous system by adding an

identical backup pump (pump 2) and a new component we

refer to as fault monitor. A fault monitor in this regard is

a device performing automated fault diagnosis to detect and

diagnose faults and to trigger appropriate mitigation actions in

order to avert failure.

The fault monitor in our system is hosted on the same

hardware as the controller and connected to the bus. If the

fault monitor detects a fault in the pump 1 subsystem, the

backup pump 2 is switched on in order to avoid missing the

system goal.

Given a perfect monitoring device, the overall probability

of not meeting the system goal is cut in half, as now both

pump subsystems have to fail in order to reach this failure
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state. However, this assumption of a perfect monitoring device

does not hold in practice, as perfect detection performance is

deemed unrealistic and increased system complexity comes at

a price.

Fault detection performance: If the monitor does not detect the

failure of pump 1, the system will still fail. Success therefore

strongly depends on the fault monitor’s True Positive Rate

(TPR, recall, or sensitivity), where a low TPR leaves us with

a similar risk as the unmonitored system, and with a perfect

monitor providing a TPR = 1.

However, the system is also sensitive to the monitor’s False

Positive Rate (FPR, or fallout), as uncalled switching to the

backup pump does not contribute to our initial goal of risk

reduction.

A theoretical fault monitor with perfect TPR = 1 but

a FPR = 1 will always directly switch to the backup

pump, which will leave us again with a vulnerable single-

pump system. A high FPR could further increase the overall

system risk if the mitigation action brings additional risks. For

example, a backup pump and connected components having a

shorter lifespan than the main pump would lead to an overall

shorter time to failure with a high FPR than the unmonitored

single pump system.

Further, an uncalled mitigation action being performed on

an otherwise faultless system could introduce additional risk.

For example, the startup process of a pump could be more

demanding on its components than uninterrupted operation,

therefore the act of switching itself introducing new risk, or

even extreme scenarios such as overloading the piping and

consumer due to starting up the backup pump on top of a

running main pump.

Increased complexity: The introduction of the monitoring

device can have negative effects on the component that it

is monitoring, depending on what functional parts it shares

with this component. In our example, this would be the shared

computing platform with the systems controller. The monitor-

ing software could lead to a slowdown, memory corruption,

crash, or freeze of the computing platform that also runs the

controller software.

While all above discusses the effects of the monitor on its

component, there is yet another factor to be considered -

shared structures that may be used by other, maybe unrelated,

components in a bigger system. If the bus in our pump

example is used by other components, they could fall victim

to our monitor device becoming a babbling idiot, rendering

the bus unusable for other participants. All shared structures

that are connected to the monitor have to be examined and

the resulting risks evaluated. This ranges from shared power

supplies, computing and communication structures, to physical

structures, for example, additional stresses or corrosion due to

sensors integrated solely for the sake of monitoring.

5. MODEL

In order to support risk analysis and decision-making around

the integration of a fault monitoring device, we want to

TABLE I
MONITORED COMPONENT STATES

Component

working

X

Component

fault

X

Monitor

negative

X

TNX FNX

Monitor

positive

X

FPX TPX

formalize and model the effects occurring in our previous

example using DFTs.

A monitored component consists of a functional component

and its corresponding monitoring device. This monitoring

device can detect and diagnose faults in the component, and

perform corresponding mitigation in order to avoid component

and/or system failure.

5.1. Single fault model

We assume that the component is either in working condition

or subject to a fault X . We further assume that the states are

sticky, for example, faults cannot be repaired, and a monitor

positive for a certain fault will stay in this positive state.

Monitor detection performance: The monitoring device’s de-

tection performance can be defined by its True Positive Rate

(TPR, recall, or sensitivity) and False Positive Rate (FPR or

fall-out) for each fault X .

Modeling component/monitor states: We define our BEs (Basic

Events) to be true positive, false positive, false negative,

representing the status of the monitored system. Creating a

BE for true negative is superfluous as it represents the nominal

fault-free state.

Table I lists the monitored components’ states in form of true

positive for fault X (TPX ), false positive for fault X (FPX ),

and corresponding negatives (TNX and FNX ), depending on

the underlying component state and the monitor’s output.

We mutually exclude TPX , FPX , and FNX as only one of

them can occur simultaneously, shown in Figure3.

In order to model the effects of monitoring performance on

resulting risk we need to consider the next step in the monitor-

ing process described above, the triggered mitigation actions.

Positive monitor output for fault X triggers a corresponding

mitigation action. Such mitigation action has specific risks

attached to it.

A mitigation action can fail, or may even be harmful to

a healthy system not exhibiting the fault. We model these

failure paths as abstract underdeveloped events representing

the mitigation being performed on a faulty component (true

positive), and the mitigation being performed on a healthy

component (false positive).

These underdeveloped events are activated by their corre-

sponding monitored components state through a spare gate.

701



↔
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X
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Figure 3. Mutex for monitor/component states.

Combining all of the above-defined DFTs and their events

we can model the monitored components’ fault modes and

their resulting failure modes. We define five different failures

[E1, E2, E3, E4, E5] in order to accommodate for different

severity measures for each failure.

The DFT for Failure E1 shown in Figure 4, is where a

reduction in risk is achieved over the un-monitored component

by the introduction of the monitor. Failure E1 requires either a

false negative of the monitor for fault X or a true positive for

fault X of the monitor in conjunction with the corresponding

mitigation action failing. In an un-monitored system, Failure

E1 would be a direct cause of component fault X .

The DFT for Failure E2, see Figure 4, models the possibility

of an unjustified mitigation action having a negative impact

on the system. Failure E2 does not exist in the un-monitored

system.

The DFT for Failure E3, see Figure 4, models the component

faults that are not detectable by the monitoring device. The

risks resulting from Failure E3 are the same for the monitored

and un-monitored versions of the system.

Monitoring device-based risks: In addition to the aforemen-

tioned monitor performance-based risks, the introduction of a

monitoring device itself adds risks because of increased system

complexity and required resources.

Failure E4 (see Figure 5) models the possibility of the

monitoring device compromising or deteriorating the compo-

nents’ function. Reasons for such disturbances of component

function can be, for example, the monitoring device sharing

computational resources with the component, allowing the

monitor to corrupt or slow down the shared resource.

Failure E5 models the effects of the monitoring device on

structures shared with other components. For example, data

buses, electric supply, or even mechanical structures. Given a

system composed of multiple components, monitor devices,

and structures, each structure is to be modeled as such a tree,

incorporating all components and monitors connected to this

Failure E1

Correct 

Mitigation 

X

True 

positive 

X

False 

negative 

X

Failure E2 

Over 

Mitigation 

X

False 

positive 

X

Component

failure 

Q

Failure E3

Figure 4. Failure trees E1-E3 resulting from component and monitor state

Failure E4

Monitor 

compromising 

function

Failure E5

Monitor 

compromising 

Structure

Component 

compromising 

Structure

Figure 5. Failure trees E4-E5, monitor compromising function

and structure.

structure. Figure 5 shows a minimal DFT for Failure E5 for a

system comprising only one component and its monitor. Given

a structure that is critical to multiple components, and shared

by those components and their monitors, all of the involved

components have to be incorporated. This DFT serves as an

illustration and approximation, while in practice it may be

replaced by risks and probabilities determined using structural

reliability analysis.

Multiple faults and multiple components Assuming not only

the independence of faults but also the independence of their

corresponding mitigation actions or misdetections, as well as

the exclusion of emergent or combined effects - a multi-

component, multi-fault system can be modeled using simple

replication of the DFTs described above. In order to do so, the

sub DFTs for E1 and E2, (see Figure 4) have to be replicated

for each specific fault of a single component.
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TABLE II
MULTI FAULT MONITORED COMPONENT STATES

FP X FN X TP X TN X

FP Y
Complete

overmitigation

Wrong

mitigation

Partial

overmitigation
SFT

FN Y
Wrong

mitigation

Complete

undermitigation

Partial

undermitigation
SFT

TP Y
Partial

overmitigation

Partial

undermitigation

Complete

mitigation
SFT

TN Y SFT SFT SFT SFT

The failure trees E3 (see Figure 4) as well as E4 (see

Figure 5). have to be replicated for each component in the

system. The failure tree E5 (see Figure 5) is to be replicated

for each structure in the system.

5.2. True multi fault model

Considering such emergent and combinatory effect, while al-

lowing multiple simultaneous faults to occur, increases model

complexity significantly. For the following discussion we

therefore limit the number of simultaneously occurring faults

to two, in order to provide a manageable scope.

The occurrence of multiple simultaneous faults constitutes

sources of risks, including emerging or combinatory effects

from simultaneous component faults, mitigation actions, and

their possible combinations. Table II provides an overview of

the newly introduced states for combining two faults. Each

state in Table II is defined by severity and manifestation

probability.

The bottom row and right column, of Table II contains the

states already covered by the single-fault trees discussed in

the previous section (see 5-A).

The states/failure modes described in Table II can be modeled

using cold spare gates, activating the abstract events repre-

senting combinatory and emerging issues. Figure 6 shows the

DFT for Complete overmitigation as an example.

This results in nine additional states, comprised of six different

types of failure modes that we briefly discuss:

Complete overmitigation describes the application of two si-

multaneous mitigation actions to a healthy system and includes

any additional risks introduced by such combination over the

risks are already modeled in the false positive branches of

failure tree E2 in Figure 4.

Complete undermitigation describes two simultaneous unmit-

igated faults and incorporates the additional risk from this

combination over their standalone risks as modeled in failure

tree E1 in Figure 4.

Complete mitigation describes two simultaneous mitigated

faults and contains additional risks that may arise from such

a combination.

Wrong mitigation describes the combination of a false positive

and false negatives and models the risks of this specific

mitigation action being applied on a component in another

fault mode beyond the risks already modeled in E1 and E2
in Figure 4.

Failure 

Complete 

overmitigation 

 

False 

Positive

X

False 

Positive

Y

Figure 6. DFT for Complete overmitigation in a system with

two monitored faults X and Y .

Partial overmitigation and partial undermitigation model the

states in which either two different mitigation actions are

applied to a single fault, or only one mitigation action is

applied to two faults. Again, the risks arising from the specific

combinations beyond their standalone effects, already modeled

in E1 and E2 in Figure 4, are to be considered.

The resulting matrices can be translated again into DFTs

representing underlying states. These fault/failure matrices

can of course be sparse. When generating the DFTs, events

with either zero probability or failures with zero cost can be

omitted.

5.3. Scalability

Manual creation of such a DFT model for multiple com-

ponents and monitors with multiple faults quickly becomes

cumbersome. However, under the assumption of independence,

this model could be scaled by replication of the DFTs to the

desired number of components, monitors, and structures and

their associated faults. The inclusion of emergent behaviors

and combinatory effects to model multi-fault scenarios will

lead to an exponential growth of model size.

While such scaling by replication can be trivially automated,

enabling the creation of big models containing numerous
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faults, the scalability of DFT simulation tools in use has to

be considered.

6. IMPLEMENTATION AND RESULTS

In the following subsections, we discuss the results obtained

using our example application considering single and multiple

faults.

6.1. Single fault model

We assume a minimalistic, exemplary system consisting of a

single component and its corresponding monitor. There are

two possible types of component faults Q and X , the latter

being detectable by the monitoring device with given Recall,
with the monitor exhibiting a given Fall-out rate for fault X .

Based on our proposed single fault scenario DFTs from

Section 5-A, we implement this model using Storm Dft[31]1.

For the sake of simplicity, we implemented all BEs as Poisson

point processes on a real line representing time with a constant

rate λ.

While it would be possible to model the abstract events

TPX , FPX , and FNX using probabilistic dependency gates

in theory, doing so would require the inclusion of XOR, NEG,

or POR gates, possibly resulting in non-coherent DFTs [26].

Further, not all DFT software packages, including Storm,

support the required gates.

We therefore calculate the rates λTPX
and λTPX

based on

component failure rate λComponentFailureX and monitor de-

tection performance as follows:

λTPX
= RecallX ∗ λComponentFailureX

λFNX
= (1−RecallX) ∗ λComponentFailureX

We consider our system failed when any of the DFTs E1 to E5
failed and modeled this combination using OR gates. Table III

shows the default parameters used in our implementation.

Listing 1 shows the Storm Dft source code of our model.

1 toplevel "top";
2 "top" or "failure_e1" "failure_e2" "failure_e3"

"failure_e4" "failure_e5";

4 "failure_e1" or "false_negative_x" "
mitigation_failed";

5 "mitigation_failed" csp "true_positive_x" "
correct_mitigation_x";

7 "failure_e2" csp "false_positive_x" "
over_mitigation_x";

9 "failure_e5" or "monitor_compromise_structure" "
component_compromise_structure";

11 "m" mutex "true_positive_x" "false_negative_x" "
false_positive_x";

13 "failure_e3" lambda=1.000e-08 dorm=0;

15 "failure_e4" lambda=1.000e-09 dorm=0;

17 "true_positive_x" lambda=9.900e-07 dorm=0;
18 "false_negative_x" lambda=1.000e-08 dorm=0;

1https://www.stormchecker.org/about.html

TABLE III
DEFAULT PARAMETERS OF OUR SINGLE FAULT MODEL

Parameter Value
λComponentFailureX 10−6

RecallX 0.99
λFallOutX 10−5

λOverMitigationX
10−5.9

λCorrectMitigationX
10−6

λComponentFailureQ 10−8

λMonitorCompromisingFunction 10−9

λMonitorCompromisingStructure 10−9

λComponentCompromisingStructure 10−8

19 "false_positive_x" lambda=1.000e-05 dorm=0;

21 "over_mitigation_x" lambda=1.260e-06 dorm=0;
22 "correct_mitigation_x" lambda=1.000e-06 dorm=0;

24 "monitor_compromise_structure" lambda=1.000e-09
dorm=0;

25 "component_compromise_structure" lambda=1.000e
-08 dorm=0;

Listing 1. Storm DFT of our single fault model.

We performed sensibility analysis using this Storm implemen-

tation of our single fault model. We visualize the effects of the

diagnostic monitors’ performance and mitigation performance

on overall system reliability in terms of Mean Time To Failure

(MTTF).

Figure 7 shows the systems MTTF in dependence of the

monitors Recall for various Fall− out rates. Trivially, larger

Recall results in a higher probability of detecting and mitigat-

ing a failure X , therefore increasing the MTTF of the system.

However, Figure 7 also shows that the Fall − out rate has a

significant and more profound impact on the systems MTTF,

as high Fall− out rates can result in lower overall reliability

than an unmonitored system.

This results from the combination of Fall − out rates

and risks from Overmitigation. Figure 8 shows the sys-

tems MTTF in dependence on Fall − out rate for various

Overmitigation failure rates. If Overmitigation does not

come at an additional cost, therefore λOverMitigationX
being

the same as λComponentFailureX and λCorrectMitigationX
, a

high Fall − out rate results in no benefit in terms of system

MTTF over an unmonitored system. At lower Fall − out
rates, the system can benefit in terms of increased MTTF.

However, if λOverMitigationX
comes at a cost in terms of an

increased failure rate, the addition of the diagnostic monitor

and mitigation actions can make the system less reliable than

in its original state.

In both Figures 7 and 8 we can observe the MTTF converging

towards a limit. In order to investigate the limiting factors,

Figure 9 shows the systems’ MTTFs’ dependence on the

components fault X rate for various monitor-caused structural

and functional fault rates. We can observe that given a low

enough rate of component fault X , the systems MTTF can not
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Figure 7. Recall

Figure 8. False Positive Rate
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Figure 9. Component Failure Rate

TABLE IV
ADDITIONAL DEFAULT PARAMETERS FOR MULTI FAULT MODEL

Parameter Value
λCompleteMitigationXY

10−5.9

λCompleteOvermitigationXY
10−5

λCompleteUndermitigationXY
10−1

λWrongMitigationX
10−4

λPartialOvermitigationX
10−5.9

λPartialUndermitigationX
10−5.9

λWrongMitigationY
10−4

λPartialOvermitigationY
10−5.9

λPartialUndermitigationY
10−5.9

benefit any more from the addition of the diagnostic monitor

as it is hampered by the additional complexity reflected in

additional structural and functional fault rates.

6.2. Multi fault model

Based on our single fault model, we create a multi-fault model

comprising two different diagnosable faults X and Y . Rates

for both faults, including their corresponding monitor and

mitigation performance, are parameterized the same way as

the single fault model listed in Table III.

Additional parameters used to represent combinatory and

emergent behavior are shown in Table IV.

Some states of this model are not reachable with the given

rates. For example, full and partial under mitigations are due

to a single unmitigated fault, as the model is already in a

failed state. However, we include them to create a model that

conforms with our model definition in Section 5-B, to enable

reusability of our implementation, and to enable investigations

into combinatory effects in separation.

We use our Storm implementation of our multi-fault model to

demonstrate its suitability for sensitivity analysis. As an exam-

ple, Figure 10 shows the effect of λCompleteOvermitigationXY

on MTTF for various Fall − out rates, with and without

combinatory effects.

7. LIMITATIONS AND THREATS TO VALIDITY

Order of events: In a real-world system, the order in which

faults and states occur can lead to different outcomes and

different risks associated with these outcomes. While DFTs

offer the capability to model such behavior, it is out of scope

for this work and we exclude such effects in our models.

Stickyness: States and events in DFTs are considered sticky,

meaning that a path that is taken cannot be reverted. For

example, once our model is in the false positive state, the

true positive state is not reachable anymore, while in reality,

the component could still fail and render the overmitigation

into the correct mitigation. This is a limitation of FTs in

general. While non-coherent DFTs [26] could be used under

certain circumstances, more complex approaches, for example,

Markov Chains, are required to model such behavior.

Representation of real-world events: Modeling our monitor/-

component states as independent Poisson point distributions

that are mutually excluded does not capture their actual

dependence. The calculation of λTPX
and λFPX

used in

our sensitivity analysis are simplifications that only roughly

estimate the real process.
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Figure 10. Overmitigation failure rate

Assumption of fault independence: Our proposed multi-fault

modeling approach assumes independence of component fail-

ures and monitors diagnosis and detection.

8. CONCLUSIONS

In this paper we proposed an abstract DFT model of a technical

system containing a fault detection/diagnosis mechanism. We

used this model to explore the impacts of a fault diagnosis

based risk reduction measure on system residual risk and

reliability.

We performed residual risk and sensibility analysis of a

small toy example comprised of a single component and its

corresponding fault diagnosis monitor and mitigation actions.

We investigated fault diagnosis performance, mitigation ef-

fectiveness, and additional risks introduced by the diagnostic

system and mitigation actions.

We discuss how high Fall-out rates in combination with the

negative effects of mitigation actions can undermine a risk

reduction measure, despite good coverage in the form of high

Recall and mitigation effectiveness. Further, we discuss the

limiting factors for achievable risk reduction, e.g. structural

risks, and highlight new risks that are introduced by the risk

reduction measure.

Our DFT model was implemented in Storm DFT and uses

only well-defined and common DFT gates. We deliberately

designed our model to avoid DFT constructs, techniques, and

gates that are known to be implementation-dependent. Our

DFT models are intended to be easily translatable to other

DFT simulation languages aside from Storm DFT.

We showed how our model could be used for rudimentary risk

and reliability analysis. We hope that our model is of use for

other researchers in determining the performance requirements

of a fault diagnosis monitor and its corresponding mitigation

actions, or for evaluation of existing systems. Further, our

model provides a catalog of risks that can form the basis for

a more detailed risk and reliability analysis of such technical

systems.

In future work, we will apply our approach to a real-world

system in a case study to compare our approach to a conven-

tional coverage-based residual risk analysis approach. Further,

we will evaluate the suitability of various DFT modeling

software frameworks for our purpose. We will investigate the

effectiveness of modularization in increasing scalability, and

perform a performance study on bigger systems.
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