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Abstract—Software reliability growth models (SRGMs) are

used to assess quantitative software reliability and to mon-

itor/control software testing progress. During almost the last

five decades, SRGMs based on non-homogeneous Poisson pro-

cesses (NHPPs) have gained much popularity for describing

the stochastic behavior of the cumulative number of software

faults detected in testing phase, because of their tractability and

goodness-of-fit performances. Grottke and Trivedi (2005) pro-

posed an interesting NHPP-based modeling framework, called

all-stage zero-truncated NHPP-based SRGMs, and showed

their goodness-of-fit and predictive performances with sev-

eral actual software development project data. In this paper

we further generalize their idea on all-stage zero-truncation

by introducing zero-truncated and/or zero-inflated compound

probability distributions. Throughout comprehensive numeri-

cal experiments, we compare our generalized modeling frame-

works with the existing ones in terms of goodness-of-fit and

predictive performances, and show that the zero-truncated

NHPP-based SRGMs are still attractive more than the others

including the non-truncated SRGMs.

Keywords–Software reliability, Software reliability growth

models, NHPP, zero-truncated compound distributions, zero-

inflated compound distributions, goodness-of-fit, prediction.

I. INTRODUCTION

In software development processes described by water-

fall development model, software reliability growth models

(SRGMs) are used to assess quantitative software reliability

and to monitor/control software testing [21], [25]. Since the

quantitative software reliability is defined as the probability

that software failures caused by faults do not occur for a

given period of time, the probabilistic behavior of software

fault-detection process in testing phase is modeled by any

stochastic counting process to estimate the software reliability.

During almost the last five decades, the SRGMs based on

non-homogeneous Poisson processes (NHPPs) have gained

much popularity for describing the stochastic behavior of the

cumulative number of detected software faults, because of

their tractability and goodness-of-fit performance. Especially,

almost all NHPP-based SRGMs are characterized by the

bounded mean value functions, which are often called the finite
failure models. Goel-Okumoto SRGM [9], Goel SRGM [10],

Ohba SRGM [26], Yamada et al.’s SRGM [35], Zhao and Xie

SRGM [36] are the representative finite failure NHPP-based

SRGMs. The SRGMs mentioned above are corresponding

to the typical fault-detection time distributions such as ex-

ponential distribution, Weibull distribution, truncated logistic

distribution, and gamma distributions with/without specified

scale parameter.

While these finite failure NHPP-based SRGMs are well moti-

vated by the software debugging mechanism from a population

(software program) with unknown number of inherent faults,

they possess an uncommon property that the inter-failure time

distributions are all defective [16], [31], i.e., the defective

probability distributions with non-zero mass part at infinity

exist. This property does not enable us to assess some useful

software reliability measures such as mean time to failure

(MTTF) and mean time between failures (MTBF), because the

resulting finite moments of the inter-failure time distributions

always diverge. Hishitani et al. [15] proposed an intuitive

approximate method to assess MTBF with the degenerate

probability distributions of the inter-failure times. Although

their idea was to use simply the normalized distribution func-

tions without non-zero mass part at infinity, such an approach

is not convinced theoretically and does not essentially lead

to the accurate assessment of MTTF and MTBF as software

reliability measures.

Hence the recent research trends in NHPP-based SRGM are

to find out more appropriate fault-detection time distributions

including Pareto distribution [1], lognormal distribution [2],

[29], log-logistic distribution [11], Burr-type distributions [18],

extreme-type distributions [27], truncated normal distribution

[29], etc., and to investigate the infinite failure models. Musa

and Okumoto [24] proposed the logarithmic Poisson execution

time model, called Musa and Okumoto SRGM, and examined

an applicability of the infinite failure model to software

reliability [25]. Littlewood [20] and Cretois and Gaudoin [5]

applied another infinite failure model, called the power-law

model or the Duane model [8], to describe the software fault-

detection phenomena. Very recently, Li et al. [19] treated

eleven infinite-failure NHPP-based SRGMs and compared

them with their associated finite-failure NHPP-based SRGMs.

In this paper we focus on a different modeling technique from

the common finite-failure NHPP-based SRGMs. Grottke and
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Trivedi [12], [13] considered an approach to deal with the

defective inter-failure time distributions in the finite failure

NHPP-based SRGMs, and developed the so-called all-stage

truncated NHPP-based SRGMs with an intermediate feature

between the finite failure models with bounded mean value

functions and the infinite failure models with unbounded

mean value functions. It should be noted that their novel

modeling approach seems to be quite interesting, because

the zero-truncation of the Poisson distribution is used for

the fault-detection time distribution, and the resulting all-

stage truncated models are reduced to simple NHPP-based

SRGMs. We further extend/generalize their all-stage truncated

NHPP-based SRGMs by introducing the zero-inflated Poisson

and binomial distributions. The zero-inflated as well as zero-

truncated counting processes are observed in various fields

in natural calamities [3], dental epidemiology [4], reliabil-

ity engineering [17], ultrasound localization microscopy [6],

horticulture [14], biological control [32]. So, the objective

of this paper is to provide a rich modeling framework with

zero-truncated and/or zero-inflated compound distributions in

software reliability modeling.

The paper is organized as follows. In Section 2, we summarize

the existing NHPP-based SRGMs with/without truncation,

where we mainly introduce the results in Grottke and Trivedi

[12], [13]. In Section 3, we introduce the zero-truncated/zero-

inflated Poisson and binomial distributions. By combining six

non-trivial Poisson and binomial distributions, we develop

three novel NHPP-based SRGMs with the bounded mean value

function, in addition to the common NHPP-based SRGMs

without truncation/inflation and the all-stage truncated NHPP-

based SRGMs with truncated Poisson distribution. Section

4 is devoted to numerical experiments for comparison of

our NHPP-based SRGMs in terms of goodness-of fit and

predictive performances. Finally, the paper is concluded with

some remarks in Section 5.

II. SOFTWARE RELIABILITY MODELING

1. NHPP-based SRGMs

In NHPP-based SRGMs, the cumulative number of software

faults detected by time t (≥ 0), {X(t), t ≥ 0}, obeys the

Poisson probability mass function (p.m.f.) with parameter

Λ(t);

Pr{X(t) = x} =
{Λ(t)}xe−Λ(t)

x!
, (1)

where Λ(t) = E[X(t)] is the mean value function and denotes

the expected cumulative number of software faults detected up

to time t. More specifically, suppose that the number of inher-

ent software faults before testing, say, at time t = 0, is given

by a non-negative integer-value N , and that each software

fault in the program is detected at independent and identically

distributed random testing time having the continuous non-

degenerate cumulative distribution function (c.d.f.) G(t) with

probability density function (p.d.f.) g(t). Then, the conditional

p.m.f. of the cumulative number of software faults detected by

Figure 1: Transition diagram of NHPP-based SRGM without

truncation.

time t is given by the binomial distribution;

Pr{X(t) = x|N} = B(x;N,G(t))

=

(
N

x

)
G(t)xG(t)N−x, (2)

where G(·) = 1−G(·) and B(x;N, p) is the binomial p.m.f.

with parameters N (integer) and p (0 < p < 1). Since the

number of inherent software faults, N , is still unknown even

after completing the system testing, it is appropriate to make

the assumption that N is also regarded as an integer-valued

random variable. If N obeys the Poisson distribution with

finite mean ν (> 0), then we have the following unconditional

p.m.f.;

Pr{X(t) = x} =

∞∑
n=0

Pr{X(t) = x|N}Pr{N = n}

=
{νG(t)}xe−νG(t)

x!
(3)

with Pr{N = n} = P (n; ν) = νn exp(−ν)/n!. Hence, under

the plausible assumptions above, it is straightforward to see

that X(t) follows an NHPP with mean value function Λ(t) =
νG(t) (0 < ν < ∞).
The NHPP-based SRGMs with mean value function in Eq.(3)

is classified into the finite failure model with bounded mean

value functions, limt→∞ Λ(t) = ν < ∞. Since X(t) is an

NHPP, it can be also regarded as a continuous-time non-

homogeneous Markov chain [31]. Let ri−1(t) be the transition

rate of an NHPP from state i− 1 to state i (= 1, 2, . . .). Then

the transition rates do not depend on the state i and are identi-

cally given by r(t) = νg(t). Figure 1 illustrates the transition

diagram of an NHPP with transition rate r(t) = νg(t) for arbi-

trary time t. Table I presents the representative fault-detection

time distributions G(t). Okamura and Dohi [30] developed

SRATS, software reliability assessment tool on spreadsheet,

and implemented the maximum likelihood estimation algo-

rithms based on the EM (Expectation-Maximization) principle

with the fault-detection time distributions in Table I.

2. All-stage Zero-truncated NHPP-based SRGMs

Grottke and Trivedi [12], [13] assumed that the software pro-

gram involves at least one software fault before the software

testing, i.e., the fault-free probability is zero before the testing,

and that the number of inherent software faults before the

testing, N , obeys the zero-truncated Poisson distribution. The

zero-truncated Poisson (ZTP) distribution is a special discrete

probability distribution, which is a variant of the Poisson

distribution, but it excludes zero mass. The main difference
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TABLE I: Representative fault-detection time distributions.

c.d.f. G(t) (b, c>0)

Exp [9] G(t) = 1− e−bt

Gamma [35], [36] G(t) =
∫ t

0
cbsb−1e−cs

Γ(b) ds

Pareto [1] G(t) = 1−
(

c
t+c

)b

TruncNormal [29]
G(t) = F (t)−F (0)

1−F (0) ,

F (t) = 1√
2πb

∫ −∞
t

e−
(s−c)2

2b2 ds

LogNormal [2], [29] G(t) = 1√
2πb

∫ −∞
log(t)

e−
(s−c)2

2b2 ds

TruncLogist [26]
G(t) = F (t)−F (0)

1−F (0) ,

F (t) = 1

1+e−
t−c
b

LogLogist [11] G(t) = 1

1+e−
log(t)−c

b

TruncEVMax [27]
G(t) = F (t)−F (0)

1−F (0) ,

F (t) = e−e−
t−c
b

LogEVMax [27] G(t) = e−e−
log(t)−c

b

between the ZTP distribution and the Poisson distribution is

that the Poisson distribution is defined on all non-negative

integers, including zero, while the ZTP distribution is only

defined on positive integers. This means that if a random

variable follows a ZTP distribution, it will never take a zero

value. For example, in the field of software reliability, we

might encounter a situation where the number of software

faults that occur within a certain period of time is at least

1. In this case, we cannot use the Poisson distribution to

model the number of software faults, because the Poisson

distribution allows zero faults to occur. Instead, we should use

the ZTP distribution because it only includes positive integer

values. Consider the transition behavior in a continuous-time

non-homogeneous Markov chain from state 0 to state 1. Let

R(t|0, X(0) = 0) be the software reliability as the probability

that no software fault is detected for (0, t] with X(0) = 0,

where the observation point is t = 0. Then, we have

R(x|0, X(0) = 0) =
∞∑

n=1

G(x)n · ν
n

n!

e−ν

1− e−ν

=
eνG(x) − 1

eν − 1
. (4)

For the transition rate ri−1(t) (i = 1, 2, . . .), a specific

transition rate r0(t) from state 0 to state 1 for the above

Markov chain is given by

r0(t) =
−dR(t|0, X(0) = 0)/dt

R(t|0, X(0) = 0)
=

νg(t)

1− e−νG(t)
. (5)

Though this model, called the one-stage zero-truncated pro-
cess, is truncated at N = 0 for the number of inherent software

faults before the testing, the remaining transition rates from

state i − 1 to state i at time t = ti−1 (i = 2, 3, . . .) are

different from r0(t). For the residual number of software

Figure 2: Transition diagram of one-stage zero-truncated

SRGM.

faults, M(t) = N −X(t), the software reliability with i ≥ 2
is given by [12], [13];

R(x|ti−1, X(ti−1) = i− 1)

= Pr {M(ti−1 + x)−M(ti−1) = i− 1|M(ti−1) = i− 1}
= e−{Λ(ti−1+x)−Λ(ti−1)}. (6)

Hence the transition rates ri−1(t) at time ti−1 (i = 2, 3, . . .)
are reduced to

ri−1(t) =
−dR(t|ti−1, X(ti−1) = i− 1)/dt

R(t|ti−1, X(ti−1) = i− 1)
= νg(t), (7)

which are exactly the same transition rates as the common

NHPP without truncation. Figure 2 is the transition diagram

of the one-stage truncated process at origin. We note that this

stochastic counting process with one-stage truncation is no

longer a Poisson process and is not tractable for the analysis.

The fundamental idea on all-stage zero-truncated NHPP by

Grottke and Trivedi [12], [13] is to replace all transition rates

by r0(t) in Eq.(5). Replacement of all the defective transition

probabilities for two successive events by the non-defective

ones enables us to develop another NHPP-based SRGM with

an arbitrary G(t). More precisely, it can be derived that

Pr {N = n|X(t) = i− 1} =
[νG(t)]n−(i−1)

(n− (i− 1))!

e−νG(t)

1− e−νG(t)

=
[νG(t)]n−(i−1)

(n− (i− 1))!

1

eνG(t) − 1
(8)

for n ≥ i. Hence, the software reliability function is given by

R(x|ti−1, X(ti−1) = i− 1) =
∞∑
n=i

(
G(ti−1 + x)

G(ti−1)

)n−(i−1)

× [νG(ti−1)]
n−(i−1)

(n− (i− 1))!

1

eνG(ti−1) − 1

=
eνG(ti−1+x) − 1

eνG(ti−1) − 1
(9)

for i ≥ 1. Then we derive the transition rate for all-stage

zero-truncated NHPP-based SRGM as

ri−1(t) =
νg(t)

1− e−νG(t)
(10)

for i ≥ 1. It is easily shown that this model is reduced to an

NHPP-based SRGM with unbounded mean value function, i.e.,

limt→∞ Λ(t) → ∞. Figure 3 depicts the transition diagram of

all-stage zero-truncated NHPP-based SRGM. It is also shown
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Figure 3: Transition diagram of all-stage zero-truncated

NHPP-based SRGM.

in [12], [13] that all-stage truncated NHPP-based SRGMs have

attractive features for both NHPPs with/without truncation.

III. GENERALIZATIONS

1. Zero-truncated and/or Zero-inflated Compound Distribu-

tions

Next, our concern is the derivation of alternative com-

pound distributions with the zero-truncated (ZT) and/or the

zero-inflated (ZI) distributions for the binomial distribution

B(m;n, p) and the Poisson distribution P (m; ν) [7], [22].

The zero-truncated binomial (ZTB) and zero-truncated Poisson

(ZTP) distributions are defined by the binomial and Poisson

distributions with positive support m = 1, 2, 3, · · · , having the

p.m.f.s; Pr{X = m|X ≥ 1} and Pr{N = m|N ≥ 1}, respec-

tively. Grottke and Trivedi [12], [13] just focused on only the

zero-truncated Poisson distribution in Eq.(4). In addition, we

introduce the zero-inflated binomial (ZIB) and zero-inflated

Poisson (ZIP) distributions whose p.m.f.s have the special

mass parts at N = 0 and X = 0, respectively. The ZIB/ZIP

distribution is a special discrete probability distribution used to

describe the phenomenon of observing too many zeros in cer-

tain situations. The ZIB/ZIP distribution consists of two parts:

deterministic zeros and a part that follows a binomial/Poisson

distribution. The ZIB/ZIP distribution assumes two types of

zeros, one is “structural zeros”, i.e., zeros due to some inherent

structure or mechanism, and the other is “sampling zeros”, i.e.,

zeros randomly sampled from a Poisson process. In the field

of software reliability, we may encounter situations where no

fault is found in a series of software tests. This is because these

tests did not trigger any fault, which are “structural zeros”, or

although these tests triggered faults, they were not detected for

various reasons such as randomness, incompleteness of testing,

etc., which are “sampling zeros”. In this case, we can use the

ZIB/ZIP distribution to model the software testing results more

accurately. For instance, the ZIB distribution, ZIB(m; p, ω),
is given by

Pr{X = m} =

{
ω + (1− ω)qn, m = 0
(1− ω)B(m;n, p), m ≥ 1

(11)

with q = 1−p and the zero-inflation parameter ω ∈ [−qn/(1−
qn), 1]. When ω = −qn/(1 − qn), the ZIB distribution is

reduced to the ZTB distribution;

Pr{X = m} =

(
n
m

)
pmqn−m

1− qn
, m ≥ 1. (12)

In this sense, since the ZIB distribution is a generalization

of the ZTB distribution, we deal with only the ZIB distri-

bution hereafter. For the Poisson case, we can derive the

ZIP and ZTP distributions, ZIP (m; ν, ω) and ZTP (m; ν), as

well. Table II presents the common binomial/Poisson distribu-

tions, ZTB/ZTP distributions and ZIB/ZIP distributions, where

ω1 (−1/(eν−1) ≤ ω1 ≤ 1) and ω2 (−qn/(1−qn) ≤ ω2 ≤ 1)
denote the respective inflation parameters, ω1 and ω2, for ZIP

and ZIB distributions, respectively.

Based on the results in Table II, we derive the compound

distributions. The compound distributions of the binomial

and Poisson distributions (B-P) and the binomial and ZTP

distributions (B-ZTP) are trivial. Here we derive the compound

distributions with combinations of the binomial distribution

and ZIP (B-ZIP), ZIB and the Poisson distribution (ZIB-P),

ZIB and ZTP (ZIB-ZTP), ZIB and ZIP (ZIB-ZIP). For all the

combinations above, we obtain the zero count probability as

Pr{X = 0} = Pr{N = 0}+
∞∑

n=1

Pr{X = 0|N = n}

× Pr{N = n}. (13)

For example, in the combination of the binomial distribution

and the ZTP distribution in [12], [13], we have

Pr{X = m} =

∞∑
n=m

(
n

m

)
pmqn−m · ν

n

n!

e−ν

1− e−ν

=
(νp)m

m!

e−νp

1− e−ν
(14)

for m ≥ 1, where

Pr{X = 0} =

∞∑
n=1

qn · ν
n

n!

e−ν

1− e−ν
=

e−νp − e−ν

1− e−ν
. (15)

In Table III, we summarize six compound distributions, where

ZTP (m; ν), ZIP (m; ν, ω1) and ZIB(n; p, ω2) are the ZTP

with parameter ν, the ZIP with parameters (ν, ω1) and the ZIB

with parameter (p, ω2), respectively.

2. New Class of Finite Failure NHPP-based SRGMs

Based on the results in Table III, we develop the associated all-

stage truncated and/or all-stage inflated NHPP-based SRGMs.

For the brevity, we just give a combination of the common

binomial distribution and the ZIP distribution. Since the soft-

ware reliability is given by

R(t|0, X(0) = 0) = ω1 + (1− ω1)e
−νG(t), (16)

the transition rate r0(t) can be obtained as

r0(t) =
(1− ω1)νg(t)e

−νG(t)

ω1 + (1− ω1)e−νG(t)
. (17)

Hence, the mean value function of the corresponding all-stage

inflated NHPP-based SRGM (B-ZIP) is derived as

Λ(t) = − ln (R(t|0, X(0) = 0))

= − ln (ω1 + (1− ω1)e
−νG(t)). (18)

671



TABLE II: Zero-truncated and zero-inflated distributions.

p.m.f. Common p.m.f. ZT p.m.f. ZI p.m.f.

P (m; ν)
(Poisson)

νm

m! e
−ν(m ≥ 0) νm

m!(eν−1) (m ≥ 1)
ω1 + (1− ω1)e

−ν(m = 0)

(1− ω1)
νm

m! e
−ν(m ≥ 1)

B(m;n, p)
(Binomial)

(
n
m

)
pmqn−m(m ≥ 0)

(n
m)p

mqn−m

1−qn (m ≥ 1)
ω2 + (1− ω2)q

n(m = 0)
(1− ω2)

(
n
m

)
pmqn−m(m ≥ 1)

TABLE III: Compound distributions.

p.m.f. B(n, p) ZIB(n, p, ω2)

P (m; ν) e−νp (νp)m

m! (m ≥ 0)

ω2 + (1− ω2)e
−νp

(m = 0)

(1− ω2)e
−νp (νp)m

m!
(m ≥ 1)

ZTP (m; ν)
e−νp−e−ν

1−e−ν (m = 0)
e−νp

1−e−ν

(νp)m

m! (m ≥ 1)

ω2 + (1− ω2)
e−νp−e−ν

1−e−ν

(m = 0)

(1− ω2)
e−νp

1−e−ν

(νp)m

m!

(m ≥ 1)

ZIP (m; ν, ω1)

ω1 + (1− ω1)e
−νp

(m = 0)

(1− ω1)e
−νp (νp)m

m!
(m ≥ 1)

ω1 + ω2 − ω1ω2

+(1− ω1)(1− ω2)e
−νp

(m = 0)

(1− ω1)(1− ω2)e
−νp (νp)m

m!
(m ≥ 1)

TABLE IV: Mean value functions for all-stage truncated and all-stage inflated NHPP-based SRGMs.

Λ(t) B(n,G(t)) ZIB(n,G(t), ω2)

P (m; ν) νG(t) ln
(

1
ω2+(1−ω2)e−νG(t)

)
ZTP (m; ν) ln

(
1−e−ν

e−νG(t)−e−ν

)
ln
(

1−e−ν

ω2(1−e−ν)+(1−ω2)(e−νG(t)−e−ν)

)
ZIP (m; ν, ω1) ln

(
1

ω1+(1−ω1)e−νG(t)

)
ln
(

1
ω1+ω2−ω1ω2+(1−ω1)(1−ω2)e−νG(t)

)

Table IV presents the mean value functions for all-stage

truncated and all-stage inflated NHPP-based SRGMs. From

these results, by replacing p by G(t) in Table II, it can be seen

that the NHPP with unbounded mean value function is only

B-ZTP (a combination of the common binomial distribution

and the ZTP distribution) by Grottke and Trivedi [12], [13]. In

other words, it is pointed out in Table IV that B-ZIP, ZIB-P,

ZIB-ZTP and ZIB-ZIP give the bounded mean value functions,

where B-ZIP is exactly same as ZIB-P.

Note that SRGMs with zero-inflation include additional pa-

rameters ω1 and/or ω2. These parameters imply the inflation

probability if 0 ≤ ωi ≤ 1 (i = 1, 2), but should be

regarded as model parameters to be estimated in the range

of −1/(eν − 1) ≤ ωi ≤ 1, because the all-stage truncated

NHPP-based SRGM in [12], [13] is a special case in our

ZIB-ZTP with ω2 = 0. This fact indicates that the likelihood

function based on our ZIB-ZTP is not less than that based on

B-ZTP in the reference [12], [13]. The special interest is that

the modeling framework developed here is distribution-free,

so substituting an arbitrary c.d.f. into G(t) leads to various

reliability growth patterns in unbounded mean value function.

IV. NUMERICAL EXPERIMENTS

1. Data Sets

In the experiments, we compare all the NHPP-based SRGMs;

existing NHPP (B-P), B-ZTP, B-ZIP, ZIB-ZTP and ZIB-ZIP

with the general fault-detection time distributions G(t). For the

comparative purpose, we assume nine distribution functions in
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TABLE V: Data Sets

Data set Testing weeks No. faults Source Nature of system

DS1 17 54 SYS2 [23] Real time command and control system

DS2 14 38 SYS3 [23] Real time command and control system

DS3 19 120 Release2 [34] Tandem software system

DS4 12 61 Release3 [34] Tandem software system

DS5 14 9 NASA-supported project [33] Inertial navigating system

DS6 20 66 DS1 [28] Embedded application for printer

DS7 33 58 DS2 [28] Embedded application for printer

DS8 30 52 DS3 [28] Embedded application for printer

TABLE VI: Comparison of goodness-of-fit performances.

Best Zero-Truncation (B-ZTP) Best B-ZIP Best ZIB-ZTP Best ZIB-ZIP Best Existing NHPP (B-P)

DS1
65.3604439 75.0527041 67.3604439 77.8964183 73.0527000

(TruncNormal) (LogLogist) (TruncNormal) (TruncEVMax) (LogLogist)

DS2
56.1390325 63.6936843 57.2423972 65.4254006 61.6937300

(TruncEVMax) (LogEVMax) (LogNormal) (LogEVMax) (LogEVMax)

DS3
87.2307592 89.2571816 89.2307592 95.5477433 87.2571900

(TruncNormal) (TruncNormal) (TruncNormal) (Exp) (TruncNormal)

DS4
51.1235411 53.0515099 53.1235411 55.1060030 51.0515100

(TruncLogist) (TruncLogist) (TruncLogist) (TruncLogist) (TruncLogist)

DS5
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Figure 4: Estimation behaviors of the cumulative number of

software faults in DS6.

Table I; Exp [9], Gamma [35], [36], Pareto [1], TruncNormal

[29], LogNormal [2], [29], TruncLogist [26], TruncEVMax

[27], LogEVMax [27]. In Table V, we present eight data sets

to use for the analysis, where all software development project

data sets are software fault-detection time interval data (group

data) observed in actual software development projects.

2. Goodness-of-Fit Performance

First of all, we compare all the NHPP-based SRGMs (existing

(B-P), zero-truncation (B-ZTP), B-ZIP, ZIB-ZTP, ZIB-ZIP)

with nine kinds of fault-detection time c.d.f.s in terms of

goodness-of-fit performance. The model parameters are esti-

mated by means of the maximum likelihood method, where

the best model is selected based on the smallest Akaike

information criterion (AIC):

AIC = −2MLL + 2π, (19)

with the maximized log-likelihood, MLL, and the degree of

freedom (number of free parameters), π.

In Figure 4, we show the behaviors of the mean value functions

for B-P, B-ZTP, B-ZIP, ZIB-ZTP and ZIB-ZIP with DS6 in

Table V, where the model in brackets denotes the best fault-

detection time distribution in Table I. It is observed that B-

P shows a different trend from ZIB-ZIP, and that both B-

ZTP and/or ZIB-ZTP somewhat underestimate the cumulative

number of software faults more than B-P and ZIB-ZIP in

DS6. Looking at the behaviors of the mean value function,

the difference among B-ZTP, B-ZIP and ZIB-ZTP is not so

remarkable. To check more detailed differences, Table VI

presents the comparison of goodness-of-fit performances based
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on the AIC. From the results with eight data sets, it is seen that

all-stage truncated NHPP-based SRGMs [12], [13] (B-ZTP)

provides the best goodness-of-fit in five data sets (DS1, DS2,

DS3, DS5, DS8), and that the common NHPP-based SRGM

(P-B) does in two data sets (DS4, DS7). Since ZIB-ZTP gives

the best result for only DS6, at first look, our proposed SRGMs

(B-ZIP, ZIB-ZTP, ZIB-ZIP) might be considered as poor fitting

performances. It is worth noting however that the differences

on AIC between ZIB-ZTP and the best SRGM in all data

sets are less than 2. Because ZIB-ZTP contains an additional

parameter ω1 comparing with B-P and B-ZTP, the goodness-

of-fit performances for ZIB-ZTP and the best SRGM in DS1-

DS5 and DS7-DS8 are almost similar. Instead, in DS6, our

ZIB-ZTP shows much better performance than the other four

SRGMs. The observation above implies that our compound

distribution model (ZIB-ZTP) has advantages to the common

NHPP-based SRGM (B-P) and the all-stage truncated NHPP-

based SRGMs (B-ZTP), and outperforms the other SRGM

modeling frameworks in all data sets.

3. Predictive Performance

Next we investigate the predictive performances on our NHPP-

based SRGMs for the unknown pattern of the cumulative

number of software faults in the future. As the training data,

we use the software fault counts observed at 20%, 50% and

80% points of the entire data, and predict the cumulative

number of faults in the remaining time periods corresponding

to 80%, 50% and 20% data. The predictive mean squared error

(PMSE) is used:

PMSE =

√∑n+l
i=n+1(Λ(ti)− xi)2

l
, (20)

where (ti, xi) (i = n + 1, . . . , n + l) are the group data for

validation and l (= 1, 2, . . .) are the prediction lengths. In

Figure. 5, we plot the prediction behaviors of the cumulative

number of software faults at 20%, 50% and 80% observation

points, respectively, with DS6. In the early (20%) and middle

(50%) testing phases, the common NHPP-based SRGMs (B-

P) tend to rather under-predict the number of faults detected

in the future. More specifically, it is observed that B-ZTP and

ZIB-ZIP make the over-predictions in the early testing, and

that all the SRGMs tend to under-predict the fault counts. In

the late (80%) testing phase (see Figure. 4 (c)), we find that

only ZIB-ZIP gives a stable prediction.

To examine the predictive performances more accurately, we

compare the minimum PMSEs for all the NHPP-based SRGMs

at 20%, 50% and 80% observation points in Tables VII,

VIII and IX, respectively. It can be seen that B-ZTP gives

the best predictive performances in four data sets, three data

sets and four data sets out of eight in Tables VII, VIII and

IX, respectively. The point to be addressed here is that our

new SRGMs (B-ZIP, ZIB-ZTP, ZIB-ZIP) could make the best

predictions in three, four and three data sets at 20%, 50% and

80% observation points, respectively. Instead, the predictive

performances on the common NHPP-based SRGM (B-P) are

relatively poor compared with the zero-truncated and/or zero-

inflated NHPP-based SRGMs. These results suggest us that

the zero-truncated and/or zero-inflated NHPP-based SRGMs

have great potential to assess quantitative software reliability

more accurately.

However, note that the predictive performances in Tables VII,

VIII and IX are based on the best prediction models with the

minimum PMSEs in each model category. In other words, it

is not feasible to know the best prediction model in advance

at each observation point. In Figure. 6, we show the behaviors

of the predictions by respective SRGMs with the minimum

AICs at each observation point when DS6 is analyzed. It can

be seen that the common NHPP-based SRGM (B-P) tends to

predict a smaller cumulative number of software faults than

the other SRGMs in both early and middle testing phases.

On one hand, we see that ZIB-ZIP makes a plat prediction

in the late testing phase. Tables X, XI and XII present the

comparison of PMSEs with the minimum AIC at 20%, 50%

and 80% observation points, respectively. So, we use the best

goodness-of-fit models for the prediction for the remaining

testing periods. In the early testing phase at 20% observation

point, it is found that B-ZTP gives the smaller PMSEs in four

data sets (DS3, DS4, DS6, DS7). In the middle testing phase at

50% observation point, we can check ZIB-ZIP could provide

the best prediction results in four cases. In the late testing

phase at 80% observation point, B-ZTP won in four cases,

and our new NHPP-based SRGMs result cloud show the best

predictions in three data sets. In the above feasible predictions,

we found that the all-stage truncated NHPP-based SRGM in

[12], [13] (B-ZTP) could give nice predictive performances on

average, although it does not always the really best prediction

model.

It should be emphasized that we do not aim at finding out

the best prediction model in this paper, because both the

goodness-of-fit and predictive performances strongly depend

on the kind of software fault count data. Our claim in this

paper is that the zero-truncated and/or zero-inflated NHPP-

based SRGMs including the all-stage truncated NHPP-based

SRGM in [12], [13], B-ZTP, B-ZIP, ZIB-ZTP and ZIB-ZIP,

are useful to quantify the software reliability, and can be

regarded as competing SRGMs for the common NHPP-based

SRGM (B-P). This fact tells us that the naive treatment of the

zero count in software reliability modeling affects the accurate

goodness-of-fit and predictive performances on the software

fault counts.

V. CONCLUSION

In this paper, we have proposed a unified modeling framework

on zero-truncated and/or zero-inflated NHPP-based SRGMs,

which are generalizations of the existing all-stage truncated

NHPP-based SRGMs in [12], [13]. We have developed three

novel NHPP-based SRGMs with bounded mean value func-

tions, by introducing the zero-inflated binomial and Pois-

son distributions. In numerical experiments, we have com-

pared five NHPP-based SRGM frameworks with nine baseline

probability distributions (fault-detection time distributions)
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Figure 5: Prediction behaviors of the cumulative number of software faults with the minimum PMSE in DS6.

TABLE VII: Comparison of predictive performances at 20% point.

20% Best PMSE

Zero-Truncation (B-ZTP) B-ZIP ZIB-ZTP ZIB-ZIP Existing NHPP (B-P)

DS1
3.95295 3.95297 2.30117 1.09084 1.291475

(Gamma) (LogLogist) (TruncLogist) (TruncLogist) (TruncLogist)

DS2
0.587803274 8.150215975 0.509822998 1.7011249 2.10945

(TruncEVMax) (LogEVMax) (TruncEVMax) (TruncLogist) (TruncEVMax)

DS3
7.187367945 7.187250064 14.7753837 7.3814763 7.756989

(Gamma) (Gamma) (LogEVMax) (Gamma) (Gamma)

DS4
5.26728768 12.27198957 12.27198957 12.280689 11.02741

(TruncNormal) (Exp) (Exp) (Exp) (Pareto)

DS5
0.46577 0.46772 0.46772 0.8406568 0.52506

(Pareto) (Exp) (Exp) (Pareto) (Exp)

DS6
2.634281604 2.946731141 4.570474898 2.7320466 3.688794

(TruncEVMax) (TruncEVMax) (TruncEVMax) (Pareto) (Pareto)

DS7
2.053909619 6.830437556 6.830437556 6.8304955 4.122789

(TruncNormal) (Pareto) (Pareto) (Pareto) (Exp)

DS8
6.958507505 6.961564841 6.952764921 6.9584784 4.721361

(Exp) (LogEVMax) (LogEVMax) (Pareto) (TruncNormal)
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TABLE VIII: Comparison of predictive performances at 50% point.

50% Best PMSE

Zero-Truncation (B-ZTP) B-ZIP ZIB-ZTP ZIB-ZIP Existing NHPP (B-P)

DS1
0.84767 0.99188 3.35876 0.99205 0.990064

(TruncNormal) (TruncNormal) (LogNormal) (TruncNormal) (TruncNormal)

DS2
0.4458199 2.4065462 0.6131751 2.4065544 2.399617

(TruncEVMax) (Exp) (TruncEVMax) (Exp) (Pareto)

DS3
9.37152 9.0648332 8.1871851 2.0169678 5.305319

(LogEVMax) (Pareto) (Exp) (Exp) (LogEVMax)

DS4
4.1029494 4.1056317 6.9741587 2.7624573 3.077433

(Pareto) (Pareto) (Exp) (TruncLogist) (Pareto)

DS5
0.13579 0.15121 0.13579 0.1512251 0.117158

(Gamma) (TruncEVMax) (Gamma) (TruncEVMax) (Pareto)

DS6
1.2897265 6.0509329 3.2231267 6.0509313 6.034253

(TruncNormal) (Exp) (TruncNormal) (Exp) (Pareto)

DS7
1.1467313 1.1467315 3.6902654 0.3586782 1.187932

(LogEVMax) (LogEVMax) (TruncLogist) (TruncEVMax) (Gamma)

DS8
3.455164 2.986172 1.3476605 0.7465237 2.996425

(TruncLogist) (TruncLogist) (LogLogist) (Exp) (TruncLogist)

TABLE IX: Comparison of predictive performances at 80% point.

80% Best PMSE

Zero-Truncation (B-ZTP) B-ZIP ZIB-ZTP ZIB-ZIP Existing NHPP (B-P)

DS1
0.66412 0.66425 1.37705 0.66425 0.66412345

(LogNormal) (LogNormal) (TruncLogist) (LogNormal) (LogNormal)

DS2
0.39318661 0.3931864 1.9148542 0.3931864 0.39274963

(Exp) (Exp) (Exp) (Exp) (TruncLogist)

DS3
0.27094611 0.2879378 2.8394542 2.8122989 0.28547051

(TruncNormal) (TruncNormal) (Exp) (TruncNormal) (TruncNormal)

DS4
0.97778658 0.7855031 1.7950549 1.7728895 0.78745896

(TruncNormal) (TruncNormal) (Exp) (TruncLogist) (TruncNormal)

DS5
0.38178 0.72071 0.80770 0.809102 0.38661832

(Exp) (LogNormal) (LogEVMax) (LogEVMax) (Exp)

DS6
1.17935222 1.1793522 1.5 0.7064471 1.16337724

(LogEVMax) (LogEVMax) (Exp) (Pareto) (LogEVMax)

DS7
2.21485012 2.2148353 0.914732 0.4662558 2.22908663

(TruncLogist) (TruncLogist) (Exp) (Exp) (TruncLogist)

DS8
0.26835297 0.3793148 1.0274023 0.7830395 0.37824431

(Gamma) (LogEVMax) (Exp) (LogNormal) (LogEVMax)

with eight actual software fault count data sets in terms of

goodness-of-fit and predictive performances. As the numerical

results, we have found that the goodness-of-fit performances

between the all-stage truncated NHPP-based SRGM in [12],

[13] and our all-stage binomial inflated and Poisson truncated

NHPP-based SRGMs (ZIB-ZTP) were almost similar, and

the former tended to outperform the other SRGMs on the

predictive performances in many cases. However, it is worth

mentioning that the best NHPP-based SRGMs should be

carefully checked in a more generalized modeling framework,

because the model selection affects the prediction accuracy

of quantitative software reliability, and the existing ones (B-P,

B-ZTP) do not always provide satisfactory prediction perfor-

mances. For example, in Table 6 with DS3, DS4, DS7, and

DS8, the prediction performance of ZIB-ZIP is higher than

B-P and B-ZTP. In that sense, the generalization framework

of NHPP-based SRGMs proposed in this paper will be useful

to explore more appropriate NHPP-based SRGMs with given

baseline probability distributions.

In the future, we will analyze the software fault-detection time-

domain data, since we treated only the group data on software

fault counts in this paper. Also, we will compare our all-

stage zero-truncated and/or zero-inflated NHPP-based SRGMs

(B-ZIP, ZIB-ZTP, ZIB-ZIP) having the bounded mean value

functions with the other infinite-failure NHPP-based SRGMs

[19] in a comprehensive numerical study.
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