
Towards a Benchmark for Trajectory Prediction of Autonomous Vehicles

George Daoud∗ and Mohamed El-Darieby

Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, L1G 0C5, ON, Canada

George.Daoud@OntarioTechU.ca, Mohamed.El-Darieby@OntarioTechU.ca

*corresponding author

Abstract—The technology stack of connected and autonomous

vehicles (CAV) consists of sensing, perception, motion pre-

diction, and motion planning Layers. With much success, the

sensing and perception layers have been developed. Recently,

R&D activities on the prediction of vehicles trajectory have

been attracting a lot of attention as it has the potential to

increase safety for road users. Trajectory prediction is a

significantly more difficult task because it involves capturing

historical patterns of vehicle movements that requires an un-

derstanding and analysis of unstructured spatial and temporal

data at the same time. Datasets that are used for this research

are typically incomplete or not generic enough. Machine

learning prediction models are developed in a bit of an ad hoc

manner that they use various evaluation metrics. In this paper,

we discuss the issues of such datasets, models, and evaluation

metrics. We also present the requirements and initial high-level

design of a benchmarking software framework that allows

model users to search for and select already developed models,

contributed by model developers, that process data collected by

dataset contributors, and evaluated by the proposed framework.

Further design and development of the proposed framework

will ensue.

Keywords–Trajectory prediction; Benchmark; Bird’s Eye View
Models; Graph-based models

1. INTRODUCTION

Vehicular safety is an important area of research that receives

increasing attention. Statistics show that in the US, the number

of fatalities and injuries due to vehicle crashes changed from

36k and 2.74M in 2019 [1] to 38.7K and 2.28M in 2020 [2],

respectively. CAV manufacturers and researchers have been

focusing on (and are currently still) building CAV technology

stacks that allow a vehicle to drive itself safely. While this was

met with much success, some challenges still exist; especially

after a few recently reported accidents.

The CAV technology stack consists of sensing, perception,

motion prediction, and motion planning Layers. The sensing

layer collects extensive data, estimated at a few terabytes/

second /CAV, from various sensors. The perception layer

of the stack processes and augments such data to detect,

classify and track road objects/ obstacles. The perception layer

typically uses 2D & 3D bounding boxes (or polylines or even

3D Point Clouds) surrounding an obstacle, and segmentation

of objects for classification purposes. Obstacles that can be

identified include a) pedestrians; b) vehicles; and c) traffic

signs, light signals, markings as well as driving conditions

such as challenging lighting due to fog or night as well as

lane lines and directions.

While the focus has been on developing the sensing and per-

ception layers of that stack, research started to investigate the

prediction of vehicle trajectory as it is increase driving safety

for road users [3]. Trajectory prediction is a significantly more

difficult task when compared to sensing and perception tasks.

Trajectory prediction involves capturing historical patterns of

vehicle movements in various real-life driving scenarios. In

addition, trajectory prediction has a very dynamic domain

that requires an understanding and analysis of unstructured

spatial and temporal data at the same time. Examples of

such unstructured data include a) there is no fixed or regular

structure to represent data in one image (video frame) of data,

b) the number of vehicles changes from one frame to another,

and c) lane information and road constraints are difficult to be

encoded.

At the current early stage of research in vehicular trajectory

prediction, various models, datasets and evaluation metrics

have already been proposed (albeit in an ad hoc manner) in the

literature. We see a need for providing some structure for such

research efforts. For example, the authors expect it to be very

difficult to evaluate the performance of a trajectory prediction

model using different datasets. This is because published

datasets are not generic (designed for specific scenarios),

some other datasets are not complete (missing fundamental

information) and many datasets do not follow a standardized/

unified schema. These datasets were collected and curated by

different organizations, in various contexts and for various

purposes. Also, the required computational time and resources

for the prediction process is a fundamental metric for real-life

CAV that is not reported, to the best of our knowledge, by

many (if not all) proposed prediction models. This renders

current proposals not practical because predictions are typi-

cally performed locally within a CAV in real time to forecast

the movements of surrounding objects and plan their motion

actions safely.

This paper provides a first step towards defining the require-

ments for (and high-level design of) a benchmark software

architecture to manage and compare various datasets and

models for CAV trajectory predictions. We start by reviewing

current research proposals and models and identifying their

characteristics. In Section 3, we propose a set of requirements

for the benchmarks. This is followed by a proposal for

implementing the benchmark. We then present the conclusions.

614

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/23/$31.00 ©2023 IEEE
DOI 10.1109/DSA59317.2023.00090

2. THE NEED FOR BENCHMARK

The authors recognize the need for standardizing a benchmark

for CAV trajectory prediction to mitigate issues with datasets,

models, and evaluation metrics as we describe in this section.

2.1. Issues with Datasets:

We list three problems with publicly available datasets:

1) Not generic datasets: where the data was collected for

specific driving scenarios of a particular environment (e.g.,

for highways and not city streets). In addition, some

datasets were collected for a specific geographic map that

hinders general reuse into other models. In this work,

we identify Predictable Driving Actions (PDA) as driving

actions worthy of prediction. (In contrast, trajectory predic-

tion is not needed for a vehicle travelling on crowded, with

no potential for changing lanes, highway with no near-by

ramps. It can be generally expected that such vehicles will

not be taking a driving action other than driving along).

Examples of PDAs include:

● an intersection: driving straight forward through, turning

left, turning right, U-turn

● On a highway: on-ramping, off-ramping, change lane.

2) Non-uniform datasets: Collected datasets were collected

by different organizations, for different purposes, within

different contexts and with various data collection/ acqui-

sition system and sensors (stereo cameras, LiDAR, Radar,

Sonar, IMF, GPS, thermal imaging, and car internal CAN

bus). Examples include CAV-generated datasets such as

Lyft [4], Waymo [5], Argoverse 2 [6], NuScenes [7], and

KITTI [8]. This leaves no room for uniformity in published

datasets. For example, Lyft published its real-life dataset

[4] collected in 2020 through driving 20 AVs in urban

regions in California, USA. Such datasets are typically

decomposed into several frames. Each frame captures the

position of many vehicles and other types of road agents.

Due to vehicular movements, not all agents appear in

one frame. A set of frames that include all agents under

consideration is called a scene. Raw data is preprocessed to

recognize surrounding objects and determine their relative

position and dimensions. Therefore, the dataset tracks

many types of road agents like vehicles, pedestrians, and

cyclists and covers many driving scenarios. The dataset

also includes map information. Compare this to earlier non-

CAV-generated datasets generated from stationary sensors

pre-installed on the road; for example, NGSIM [9] that

was collected from cameras fixed over a tall building

and pointed over different segments of the Highways

considered. Such videos are processed to identify (only)

vehicles and track their relative positions over different

video frames and are transformed to the same coordinates.

Other efforts used drones to collect such information, for

example, HighD [10], inD [11], rounD [12], and exiD

[13], while others use Bluetooth devices [14] to form their

dataset.

3) Incomplete datasets: the authors are not knowledgeable of

a dataset that contained complete information. Examples

of missing data include:

● the location of a certain vehicle in different frames

within one scene. In some datasets, this can be deduced

from raw data; however, this leaves some level of

inconsistency that might hinder evaluating results in a

standard manner.

● the direction of movement of vehicles.

● map road, lane, and traffic signs data, which either not

found in datasets or, at best, are inconsistent and semi-

structured. This makes it very difficult to represent, link

and process such data.

2.2. Issues with evaluation metrics:

The prediction models proposed show differences in evaluation

strategies that hinder benchmarking. For example, while some

research evaluates the prediction for every (future) second,

other research evaluates performance only at the end of the

prediction horizon (after a few seconds). Model evaluation

strategies can be categorized into three strategies:

1) Prediction Errors: which compares predicted trajectory to

actual trajectory at two levels:

● Per-agent prediction error: the Displacement Error (DE)

is defined as the Euclidean distance between the actual,

x
(i)
t , and the predicted position , x̂

(i)
t , of a vehicle

as shown in equation (1). Two other error criteria are

formed by decomposing the DE into two components

in the direction of the lane, vl, (named along-track) and

in the direction perpendicular to it,v⊥l , (cross-track [15])

which are illustrated by (2) and (3), respectively.

● Per-dataset prediction error: the following metrics, based

on root mean squared error, are used to evaluate the

prediction model over the whole dataset:

– Average displacement error (ADE), given by (4),

averages the DE over all the prediction horizons (tf)

for all prediction examples (n).

– Final displacement error (FDE) is calculated using (5)

by taking the mean of the DE evaluated at the end of

the prediction horizon.

– Other metrics include minFDE and minADE which

are the minimum of ADE and FDE values calculated

for each scene. While RF is defined as the ratio of

avgFDE to minFDE [16].

DE(i)(t) = ∥x̂
(i)
t − x

(i)
t)∥2 (1)

AT (i)(t) = ∥vl.(x̂
(i)
t − x

(i)
t))∥2 (2)

CT (i)(t) = ∥v⊥l .(x̂
(i)
t − x

(i)
t))∥2 (3)

ADE =
∑i∑

tf
t=1DE(i)(t)

ntf
(4)

FDE =
∑iDE(i)(tf)

n
(5)

2) Prediction Reliability: Others evaluate predictions models

by evaluating the safety and the reliability of prediction

615

results (for example, does the prediction trajectory lie

inside the drivable areas?). Map and lane information are

mandatory for the application of these metrics. Zhang et

al. [17] include two of those metrics:

● Drivable area occupancy (DAO) that the ratio of the

number of map pixels in the predicted trajectory that

lies within drivable areas to that of the whole trajectory.

● Drivable area count (DAC) is the ratio of the number

of trajectory predictions that are totally within drivable

areas to the total number predicted from the dataset.

3) Prediction Performance: AVs are real-life critical systems

that have stringent time requirements for algorithms that

control the movement of CAV on the road. It is mandatory

to include computational (e.g., time and resources) perfor-

mance and requirements in model evaluation.

2.3. Differences in Models:

In this section, we categorize prediction into two categories

and discuss the need for benchmarking models.

2.3..1. BEV models:

Bird’s Eye View (BEV) models extract images (picture frames)

from CAV data and use them to train a Convolutional Neural

Network (CNN) model to capture trajectory patterns. These

models generate a semantic map that encodes vehicular lo-

cation information into pixels of consecutive images. Other

data such as travel direction of a lane and travel speed

limit are digitized into color values. In spite of some loss

of information in the generated map, this process converts

variable dimensions of a dataset to a fixed dimension defined

by the width and height of the generated image and the number

of images in a (part of) scene.

Many research works investigated the use of CNN within

BEV models. Mandal et al. [18] examine the performance of

four ResNet and four EfficientNet models as the backbones of

the CNN model. Huang et al. [19] proposed a convolutional-

based Conditional variational autoencoder (CVAE) as the CNN

architecture; the performance of which was found, by Jagadish

et al. [20], to be worse than a customized residual network.

Other approaches combine other ML architectures with the

CNN in the same model as a transformer encoder followed

by an RNN-based decoder [21], convolutional layers followed

by an LSTM encoder-decoder network [22], or a convolutional

LSTM-based encoder-decoder network [23].

To compensate for information loss and to achieve higher

prediction accuracy, raw numeric data can be processed by

other “ensembling” models as shown in Figure 1. Research

work in [15], [24], [25] found “ensembling” to improve the

prediction accuracy compared with non-ensembled models.

This motivated Jagadish et al. [20] to propose another model

(after their earlier work in [26]) in which two CVAEs are used

one for the semantic maps and the other for numeric values.

Other approaches, combine traditional models with a CNN

model and use a third and final model to select between the

two partial results [27], [28], [29].

Figure 1: The general pipeline of BEV architecture

2.4. Graph-based models:

In these models, each frame is represented as a graph in which

the nodes are the agents (vehicles), and the edges connect

them to encode the “interaction” they impose on each other.

Each node has a features vector that describes the agent like

its dimension, position, and direction. Each scene is usually

represented as a set of graphs. Using graphs allows the usage

of raw data “as is” with no (or at least minimal) information

loss (there is no need for discretization or digitization). This

implies higher accuracy of input data to ML models which is

expected to result in higher trajectory prediction accuracy. This

also means a more compact input data size when compared to

those of the BEV methods. However, the main disadvantage

of graph-based methods is the difficulty of encoding “context

information” of scene components such as lane geometry and

traffic lights status in the graph. We classify graph models

according to the order of applying spatial-temporal operations,

as follows:

In Temporal-then-Spatial models, temporal information of

each road agent is processed first to generate node embedding

and features that represent the “interaction” between agents

at a given instant of time. Then, a Graph Neural Network

(or another deep learning technique) is used to predict the

positions of agents in the following instant in the future. For

example, Meng et al. [30] use an LSTM network to encode

the temporal information into a 2D grid of tensor embeddings.

Then, the grid is processed by a CNN to incorporate spatial

information. Similarly, Yan et al. [31] use an LSTM-based

encoder-decoder network followed by a spatial attention mech-

anism to encode the spatial interactions between agents into a

single embedding that is used to predict the trajectory. Both

transformers [32] and social pooling [33], [34], [35], [36] were

used for spatial embedding. In [37], the graphs are stacked

in a 3D matrix then a CNN is applied to the set of graphs.

A revolutionary approach was proposed by Singh et al. [38]

as they used positional encoding to make the model aware of

“contextual” map information and applied a graph transformer

to predict the future. Thus, this model performs better than

other graph-based models when considering complex scenes.

In Spatial-then-Temporal models, each frame is processed

individually to encode the spatial information including the in-

teractions among agents. For example, A Graph-Convolutional

Network (GCN) [39] is used to generate a spatial embedding

for each frame, then, they are processed independently via

a GRU-based encoder-decoder network. By representing the

graph as a 2D matrix, a CNN is used for feature extraction

before applying a decode-encoder network [40], [41]. Other

616

approaches use an LSTM-based encoder-decoder for final

temporal processing [41]. Another breakthrough toward a fully

context-aware graph method is achieved by Vazquez et al. [42]

in which the road components are encoded in a vectorized

representation [43] to produce a map graph. The map graph

and the vehicles-interaction graph are combined using an

attention mechanism to produce a modified graph that attends

to the important routes within the map before applying a GRU-

based encoder-decoder network.

3. PROPOSED BENCHMARK

The benchmark has three main categories of users: a) Dataset

contributor; B) Model Developer; and C) Model user. The

proposed benchmark should fulfill the following requirements.

● Dataset management requirements

– allowing a dataset contributor to add a new dataset to a

repository

– verify datasets

– allow a model developer to search repo of datasets

– provide a model developer with requested datasets for-

matted in training and testing data.

● Model management requirements

– Allow a model developer to develop a model using a

provided training dataset

– allow a model developer to upload the developed model

(and its functions) to a model repo

– allow a model developer to upload the results of running

the model on the testing dataset

– evaluate and verify the results of an uploaded model and

compare it to other models

– allow model users to search various models and their

performance metrics

– allow model users to request and download a model with

the corresponding dataset.

In Figure 2, we demonstrate a high-level architectural dia-

gram of the benchmark software, which consists of a dataset

and prediction model repositories. The benchmark software

includes data and management processes that allow for adding,

requesting, completing, and verifying a dataset as well as

model management processes that allow for adding, searching

for, and downloading to/from the repository.

Figure 2: Architectural diagram of the benchmark

A fundamental requirement for the benchmark is to present

a Unified dataset scheme that helps in designing a dataset

repository. Figure 3 provides a preliminary design of such

schema using an Entity-Relationship diagram. We designed

the schema to comply with many published CAV-generated

datasets in addition to complying with GIS software databases

with API interface such as OpenStreetMap [44].

With the proposed schema, each dataset is divided into scenes,

each of which represents a driving session. A scene has

a starting time, end time, geographic scene boundaries, and

sampling rate. These parameters allow for the identification of

data frames that compose a scene. Each data frame contains

information about agent vehicles that are identified and charac-

terized using several attributes such as (position, agent speed,

and lane ID: the lane used to travel). Agent vehicles that

appear in a certain video frame share the same scene ID and

timestamp; this is enough information to identify the agent

vehicle. Agents keep a list of frames (agent previous frame,

and agent next frame) where they appear to maintain a history

of their information. We identify agents with enough historical

information as agents with potential for driving action predic-

tions (APDAP); captured in the table APDAP in the schema.

The table uses the parameter PDA to indicate which action

is to be predicted for that particular agent. The table uses

the variable maximum history length as a control parameter.

Each agent has a maximum prediction horizon to identify the

number of seconds in the future to predict the trajectory for the

corresponding agent. If an agent appears in a scene for a very

short time, There will be insufficient historical information on

the agent, and consequently prediction of its trajectory is not

possible. Stationary information such as the lanes, roads, and

traffic lights are stored in separate tables with self-explanatory

parameters. Traffic light status is captured in its table as it

requires a timestamp parameter, through which it can be linked

to a specific scene. This section discusses possible design and

implementation techniques for the benchmark software.

Figure 3: ER of the unified dataset

3.1. Search for and download a model

The benchmark should have a User Interface that allows a

model user to search stored models (maybe using prediction

output parameters or evaluation metrics). With the standardiza-

tion of dataset, benchmark, and evaluation metrics, the system

allows users to compare and choose the model that fits their

needs and download a copy of a stored model. Researchers

617

can take advantage of transfer learning to develop or update

models. The model also can be deployed into a real-world

application.

3.2. Benchmark Data Management Processes

The first use case for benchmark usage is when a dataset

contributor would like to add a dataset to the benchmark

repository. The step for this process is as follows:

● A verification process that assures conformity is applied

Figure 4: Sequence diagram of contributing new dataset.

● The new dataset is augmented to generate a more complete

and more conformant synthetic dataset. The process is au-

tomated through many scripts and classifiers. For example,

classifiers can detect missing driving scenarios and try to

integrate data for them to ensure completeness. The APDAP

table has data uncertainty and map uncertainty parameters

to indicate the approximation of appended data.

● The quality of the dataset is evaluated. The dataset is

used as input for baseline models to test dataset quality

and performance. If the dataset produces an acceptable

performance, it is added to the data repo.

● Mechanisms for undoing/removing a dataset from the repo

should also be developed.

Another scenario of usage of the benchmark is when

1) Providing a data set to a model developer: When a dataset

is requested by a model developer, the benchmark software

is to provide a dataset that includes all driving scenarios of

interest to the developer. To ensure uniformity, when data

is sampled, the number of interesting frames describing the

driving scenarios will be controlled.

Figure 5: Sequence diagram for model developing

2) Sampling a dataset: the goal of this process is to create

a synthetic training dataset that meets the requirements of

model developers (e.g., of a certain size and/ or with certain

driving scenarios (domains) and/ or fulfilling a given set

of hyperparameters). A synthetic dataset is sampled out of

the benchmark data repository. This sampling is not done

at random to satisfy the uniformity of driving scenarios. To

achieve this, a canonical dataset and base prediction models

are defined. The base model is applied to the dataset and

a histogram of prediction errors is created for each driving

scenario. The histograms define the canonical distribution

of cases for each driving scenario. Then, this canonical

distribution is used to sample the dataset to generate a

statistically matching new dataset.

The benchmark software provides a model developer with a

synthesized dataset to be used for developing the model. The

dataset will be provided as two sets: 1) a training dataset with

input data and output (labeling) data and 2) a testing dataset

with only input data (Agent ID to predict its trajectory).

3.3. Benchmark Model Management Processes

1) A standard framework is needed for models to be deployed

within the benchmark evaluation steps, used for transfer

learning purposes, or deployed in a real-world application.

2) Adding a prediction model to the repository. A model

developer submits a prediction model to save in the repos-

itory. The developer attaches the output of the prediction

model. This output will be evaluated within the benchmark

software to evaluate the performance of the model. If the

model does not provide acceptable accuracy the model is

not added to the repository.

The benchmark software provides needed helper functions that

support frequent operators (create an image or a graph, data

transformation) needed by models to execute.

To allow for injecting the model into the benchmark software

(this is generally known as Inverse of Control, IoC, in software

engineering), the model developer provides an implementation

for a set of functions that follow an interface defined by the

benchmark. Those functions are:

● Get Prediction Output Parameters: returns a dictionary of

model prediction parameters (e.g., history length, prediction

horizon, sampling rate and type of model)

● Data Preprocessing: preprocesses numeric data of each

AgentID.

● Model Input Preparation: converts numerical data of each

AgentID into a graph, map, or other customized represen-

tation.

● Model Summary: returns a string describing the model

implementation.

● Model Load: loads parameters for transfer learning pur-

poses.

● Model Run: applies the model to a certain AgentID and

generates a predicted trajectory.

3.4. Blind Evaluation of Model Performance

Evaluate samples of model output to evaluate model per-

formance. The model developer uses the training dataset of

the synthesized dataset to fine-tune the model. Then, the

618

model is applied to the testing dataset and prediction output

is produced. This output is compared to ground truth to

be able to adjudicate the performance of the model. Output

prediction results can be grouped and processed using, for

example, AgentID. The benchmark can also calculate the

computational time required to run the submitted model over

standard hardware platforms. If the model passes those tests

with acceptable quality, it is stored in a model repo with the

corresponding functions, prediction parameters, and evaluation

metrics.

4. EXPERIMENT AND RESULTS

In this section, an examination is conducted to assess the fea-

sibility of the proposed framework. Consequently, the frame-

work’s three primary challenges will be addressed. The initial

challenge pertains to the absence of information within the

dataset. This information can be readily obtained by utilizing

the vehicle’s location and the geographic coordinate system

(specifically Latitude and Longitude), in conjunction with a

geographic database such as OpenStreetMap, which provides

map information. On the other hand, determining the missing

domain of the intriguing cases presents a complex problem.

Regrettably, numerous datasets, including the LYFT dataset,

lack domain information. The second issue concerns the search

and sampling of stored databases. The search process should

not be restricted solely to the data already contained within

the datasets; rather, it should possess flexibility and align

with the objectives of the model designer. For instance, the

user may describe a domain that is not encompassed by the

stored datasets, and the framework should be capable of sys-

tematically examining all the relevant cases to identify those

that satisfy the search criteria. Lastly, any newly submitted

dataset should undergo validation to determine its acceptance

or rejection. This validation process ought to be automated,

requiring minimal human intervention.

The aforementioned challenges can be effectively addressed

through the development of a machine learning (ML) model

that operates on the standardized data representation provided

by the framework. Specifically, the framework accommodates

the utilization of Bird’s Eye View (BEV) models, which

offer a simplified approach and can be readily employed

with the dataset. The proposed model, in particular, leverages

an RGB image that serves as a representation of the map,

along with a collection of binary images that depict the ego

vehicle’s location at the present and previous time frames.

These inputs are utilized to generate four binary variables

that correspond to four distinct domains, namely: Single-point

urban interchange (SPUI), No intersection, T-intersection, and

Diamond intersection. Notably, these four domains rely solely

on the information derived from the map and the ego vehicle’s

location. However, if the targeted domains necessitate infor-

mation pertaining to the scene’s congestion or the interaction

with surrounding vehicles, an additional set of images encom-

passing the surrounding vehicles can be incorporated as input

data.

The input images undergo transformations including rotation,

translation, and cropping, ensuring that the ego vehicle in the

current time frame is consistently positioned and oriented,

and that the images maintain a uniform size. The sampling

rate for capturing the frames is set at 1 frame per second.

Subsequently, all the transformed images are concatenated to

form a unified input. This input is then fed into a ResNet-

50 Neural Network (NN). The ResNet-50 NN is modified

to accommodate the input layer’s dimensions and number of

channels, while the output layer is adjusted to generate four

values that are subsequently normalized using a SoftMax acti-

vation function. The resulting values represent the probabilities

associated with each domain. To establish a reliable ground

truth, a manual labeling process is performed on 2000 cases

from the LYFT dataset, encompassing instances from each

domain. These labeled cases are shuffled and divided into two

distinct sets: a training set comprising 70% of the data and

a testing set comprising the remaining 30%. The training set

is employed for optimizing the NN’s parameters, while the

testing set serves to determine the appropriate point for early

stopping during the training process. Figure 6 illustrates the

confusion matrix that delineates the performance of the NN in

classifying the different domains, utilizing the testing dataset

as well as the entire dataset.

(a) Confusion Matrix for the testing set

(b) Confusion Matrix for the whole data

Figure 6: Confusion Matrix for the domain prediction model

Based on the findings depicted in Figure 6, the model achieved

accurate classification across all domains. The highest error

619

rate, at less than 3%, was observed in the no-intersection

domain. This can potentially be attributed to the similarity

in driving patterns between vehicles immediately prior to

entering an intersection and those proceeding straight through

the intersection without turning. To mitigate false positive

classifications, a threshold is employed, whereby classifica-

tions with probabilities below the threshold are either manually

classified or disregarded.

Regarding the three primary challenges within the framework,

similar models to the proposed approach can be utilized to

address the issue of missing domain information in existing

datasets. Additionally, these models can serve as a criterion for

searching and sampling stored datasets. Instead of relying on

query statements to search the dataset, users can employ binary

ML models that determine which intriguing cases should be

sampled and presented to the user. This same methodology can

be applied to assess the integrity of newly provided datasets.

By employing a set of canonical ML models, the output of the

models can be compared with the data provided in the dataset,

thereby evaluating its reliability.

5. CONCLUSIONS

At the current stage of R&D of vehicular trajectory prediction,

various models, datasets and evaluation metrics have already

been proposed (albeit in an ad hoc manner). This paper

discussed issues with current state-of-the-art as it pertains to

these datasets, models, and metrics. Published datasets are not

generic, not complete and do not follow a standardized/unified

schema as they were collected and curated by different orga-

nizations, in various contexts and for various purposes. While

the model developed so far has covered a lot of exploration

grounds, much more is needed. In particular, models that can

process both spatial and temporal datasets that are intrinsic to

the problem at hand. Even evaluation metrics need to be well

understood and applied more rigorously.

In this paper, we proposed an initial vision, set of require-

ments, and high-level design of a benchmarking framework

for such R&D. We explained how collected datasets can be

verified and incorporated into the framework repository and

how they can conform to a unified schema that we devised. We

proposed ideas of how the framework can augment datasets

with synthetic data. We also discussed how the framework

enables model developers to request datasets to use in model

development and how the framework prepares a dataset to

serve developers’ needs. We provided an initial design of how

the framework can incorporate and run developed models and

how it can be used to evaluate developed models and retain

them if they show acceptable performance.

REFERENCES

[1] “Traffic safety facts 2019: A compilation of

motor vehicle crash data,” National Center for

Statistics and Analysis, Washington, DC, Tech. Rep.,

2021. [Online]. Available: https://crashstats.nhtsa.dot.gov

/api/public/viewpublication/813141

[2] T. Stewart, “Overview of motor vehicle crashes

in 2020,” National Highway Traffic Safety

Administration, US, Tech. Rep., 2022. [Online]. Avail-

able: https://crashstats.nhtsa.dot.gov/Api/Public /Publica-

tion/813266

[3] A. R. Alozi and M. Hussein, “Evaluating the safety of

autonomous vehicle–pedestrian interactions: An extreme

value theory approach,” Analytic Methods in Accident
Research, vol. 35, p. 100230, Sep. 2022. [Online].

Available: https://doi.org/10.1016/j.amar.2022.100230

[4] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye,

L. Chen, A. Jain, S. Omari, V. Iglovikov, and

P. Ondruska, “One thousand and one hours: Self-driving

motion prediction dataset,” 2020. [Online]. Available:

https://arxiv.org/abs/2006.14480

[5] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao,

S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou,

Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan,

A. McCauley, J. Shlens, and D. Anguelov, “Large scale

interactive motion forecasting for autonomous driving

: The waymo open motion dataset,” 2021. [Online].

Available: https://arxiv.org/abs/2104.10133

[6] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh,

S. Khandelwal, B. Pan, R. Kumar, A. Hartnett,

J. K. Pontes, D. Ramanan, P. Carr, and J. Hays,

“Argoverse 2: Next generation datasets for self-driving

perception and forecasting,” 2023. [Online]. Available:

https://arxiv.org/abs/2301.00493

[7] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E.

Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,

and O. Beijbom, “nuscenes: A multimodal dataset

for autonomous driving,” 2019. [Online]. Available:

https://arxiv.org/abs/1903.11027

[8] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready

for autonomous driving? the KITTI vision benchmark

suite,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, Jun. 2012. [Online].

Available: https://doi.org/10.1109/cvpr.2012.6248074

[9] U.S. Department Of Transportation Federal Highway

Administration, “Next generation simulation (ngsim)

vehicle trajectories and supporting data,” 2017. [Online].

Available: https://data.transportation.gov/d/8ect-6jqj

[10] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein,

“The highd dataset: A drone dataset of naturalistic

vehicle trajectories on german highways for validation

of highly automated driving systems,” 2018. [Online].

Available: https://arxiv.org/abs/1810.05642

[11] J. Bock, R. Krajewski, T. Moers, S. Runde,

L. Vater, and L. Eckstein, “The inD dataset: A

drone dataset of naturalistic road user trajectories at

german intersections,” in 2020 IEEE Intelligent Vehicles
Symposium (IV). IEEE, Oct. 2020. [Online]. Available:

https://doi.org/10.1109/iv47402.2020.9304839

[12] R. Krajewski, T. Moers, J. Bock, L. Vater,

and L. Eckstein, “The rounD dataset: A drone

dataset of road user trajectories at roundabouts

620

in germany,” in 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems
(ITSC). IEEE, Sep. 2020. [Online]. Available:

https://doi.org/10.1109/itsc45102.2020.9294728

[13] T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki,

and L. Eckstein, “The exiD dataset: A real-world

trajectory dataset of highly interactive highway

scenarios in germany,” in 2022 IEEE Intelligent
Vehicles Symposium (IV). IEEE, Jun. 2022. [Online].

Available: https://doi.org/10.1109/iv51971.2022.9827305

[14] S. Choi, J. Kim, and H. Yeo, “Attention-

based recurrent neural network for urban vehicle

trajectory prediction,” Procedia Computer Science,

vol. 151, pp. 327–334, 2019. [Online]. Available:

https://doi.org/10.1016/j.procs.2019.04.046

[15] A. Trabelsi, R. J. Beveridge, and N. Blanchard, “Motion

prediction performance analysis for autonomous driving

systems and the effects of tracking noise,” 2021.

[Online]. Available: https://arxiv.org/abs/2104.08368

[16] S. H. Park, G. Lee, M. Bhat, J. Seo, M. Kang,

J. Francis, A. R. Jadhav, P. P. Liang, and L.-P. Morency,

“Diverse and admissible trajectory forecasting through

multimodal context understanding,” 2020. [Online].

Available: https://arxiv.org/abs/2003.03212

[17] K. Zhang, C. Chang, W. Zhong, S. Li, Z. Li, and

L. Li, “A systematic solution of human driving behavior

modeling and simulation for automated vehicle studies,”

IEEE Transactions on Intelligent Transportation Systems,

vol. 23, no. 11, pp. 21 944–21 958, Nov. 2022. [Online].

Available: https://doi.org/10.1109/tits.2022.3170329

[18] S. Mandal, S. Biswas, V. E. Balas, R. N.

Shaw, and A. Ghosh, “Motion prediction for

autonomous vehicles from lyft dataset using deep

learning,” in 2020 IEEE 5th International Conference
on Computing Communication and Automation
(ICCCA). IEEE, Oct. 2020. [Online]. Available:

https://doi.org/10.1109/iccca49541.2020.9250790

[19] X. Huang, S. G. McGill, J. A. DeCastro, L. Fletcher,

J. J. Leonard, B. C. Williams, and G. Rosman,

“Diversitygan: Diversity-aware vehicle motion prediction

via latent semantic sampling,” 2019. [Online]. Available:

https://arxiv.org/abs/1911.12736

[20] L. M. D.N. Jagadish, A. Chauhan, “Deep learning tech-

niques for autonomous vehicle path prediction,” in AAAI
Workshop on AI for Urban Mobility. Vancouver, Canada,

2021.

[21] M. Bhat, J. Francis, and J. Oh, “Trajformer:

Trajectory prediction with local self-attentive contexts

for autonomous driving,” 2020. [Online]. Available:

https://arxiv.org/abs/2011.14910

[22] X. Huang, G. Rosman, I. Gilitschenski, A. Jasour,

S. G. McGill, J. J. Leonard, and B. C. Williams,

“Hyper: Learned hybrid trajectory prediction via factored

inference and adaptive sampling,” 2021. [Online].

Available: https://arxiv.org/abs/2110.02344

[23] C. Kim, J.-K. Cho, Y. Jung, S.-W. Seo, and S.-W.

Kim, “Action-conditioned traffic scene prediction for

interactive planning,” in 2022 International Conference
on Electronics, Information, and Communication
(ICEIC). IEEE, Feb. 2022. [Online]. Available:

https://doi.org/10.1109/iceic54506.2022.9748470

[24] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin,

T. Nguyen, T.-K. Huang, J. Schneider, and N. Djuric,

“Multimodal trajectory predictions for autonomous

driving using deep convolutional networks,” 2018.

[Online]. Available: https://arxiv.org/abs/1809.10732

[25] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom,

and E. M. Wolff, “Covernet: Multimodal behavior

prediction using trajectory sets,” 2019. [Online].

Available: https://arxiv.org/abs/1911.10298

[26] D. N. Jagadish, A. Chauhan, and L. Mahto, “Autonomous

vehicle path prediction using conditional variational

autoencoder networks,” in Advances in Knowledge
Discovery and Data Mining. Springer International

Publishing, 2021, pp. 129–139. [Online]. Available:

https://doi.org/10.1007/978-3-030-75762-5 11

[27] C. Kim, H.-S. Yoon, S.-W. Seo, and S.-W. Kim,

“STFP: Simultaneous traffic scene forecasting and

planning for autonomous driving,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). IEEE, Sep. 2021. [Online]. Available:

https://doi.org/10.1109/iros51168.2021.9636255

[28] Z. Zhong, Y. Luo, and W. Liang, “STGM: Vehicle

trajectory prediction based on generative model

for spatial-temporal features,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 10,

pp. 18 785–18 793, Oct. 2022. [Online]. Available:

https://doi.org/10.1109/tits.2022.3160648

[29] G. Kim, D. Kim, Y. Ahn, and K. Huh, “Hybrid

approach for vehicle trajectory prediction using

weighted integration of multiple models,” IEEE Access,

vol. 9, pp. 78 715–78 723, 2021. [Online]. Available:

https://doi.org/10.1109/access.2021.3083918

[30] Q. Meng, B. Shang, Y. Liu, H. Guo, and X. Zhao,

“Intelligent vehicles trajectory prediction with spatial

and temporal attention mechanism,” IFAC-PapersOnLine,

vol. 54, no. 10, pp. 454–459, 2021. [Online]. Available:

https://doi.org/10.1016/j.ifacol.2021.10.204

[31] J. Yan, Z. Peng, H. Yin, J. Wang, X. Wang,

Y. Shen, W. Stechele, and D. Cremers, “Trajectory

prediction for intelligent vehicles using spatial-attention

mechanism,” IET Intelligent Transport Systems, vol. 14,

no. 13, pp. 1855–1863, Dec. 2020. [Online]. Available:

https://doi.org/10.1049/iet-its.2020.0274

[32] L. Li, X. Sui, J. Lian, F. Yu, and Y. Zhou, “Vehicle

interaction behavior prediction with self-attention,”

Sensors, vol. 22, no. 2, p. 429, Jan. 2022. [Online].

Available: https://doi.org/10.3390/s22020429

[33] N. Deo and M. M. Trivedi, “Convolutional social

pooling for vehicle trajectory prediction,” 2018. [Online].

Available: https://arxiv.org/abs/1805.06771

[34] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao,

621

Y. Wang, and Y. N. Wu, “Multi-agent tensor fusion

for contextual trajectory prediction,” 2019. [Online].

Available: https://arxiv.org/abs/1904.04776

[35] X. Xu, W. Liu, and L. Yu, “Trajectory prediction

for heterogeneous traffic-agents using knowledge

correction data-driven model,” Information Sciences,

vol. 608, pp. 375–391, Aug. 2022. [Online]. Available:

https://doi.org/10.1016/j.ins.2022.06.073

[36] H. Song, W. Ding, Y. Chen, S. Shen, M. Y. Wang, and

Q. Chen, “Pip: Planning-informed trajectory prediction

for autonomous driving,” 2020. [Online]. Available:

https://arxiv.org/abs/2003.11476

[37] X. Li, X. Ying, and M. C. Chuah, “GRIP: Graph-

based interaction-aware trajectory prediction,” in 2019
IEEE Intelligent Transportation Systems Conference
(ITSC). IEEE, Oct. 2019. [Online]. Available:

https://doi.org/10.1109/itsc.2019.8917228

[38] D. Singh and R. Srivastava, “Multi-scale graph-

transformer network for trajectory prediction of the

autonomous vehicles,” Intelligent Service Robotics,

vol. 15, no. 3, pp. 307–320, May 2022. [Online].

Available: https://doi.org/10.1007/s11370-022-00422-w

[39] J. An, W. Liu, Q. Liu, L. Guo, P. Ren, and T. Li, “DGInet:

Dynamic graph and interaction-aware convolutional

network for vehicle trajectory prediction,” Neural
Networks, vol. 151, pp. 336–348, Jul. 2022. [Online].

Available: https://doi.org/10.1016/j.neunet.2022.03.038

[40] Z. Sheng, Y. Xu, S. Xue, and D. Li, “Graph-

based spatial-temporal convolutional network for vehicle

trajectory prediction in autonomous driving,” IEEE
Transactions on Intelligent Transportation Systems,

vol. 23, no. 10, pp. 17 654–17 665, Oct. 2022. [Online].

Available: https://doi.org/10.1109/tits.2022.3155749

[41] C. Ju, Z. Wang, C. Long, X. Zhang, and D. E.

Chang, “Interaction-aware kalman neural networks for

trajectory prediction,” in 2020 IEEE Intelligent Vehicles
Symposium (IV). IEEE, Oct. 2020. [Online]. Available:

https://doi.org/10.1109/iv47402.2020.9304764

[42] J. L. Vazquez, A. Liniger, W. Schwarting,

D. Rus, and L. Van Gool, “Deep interactive

motion prediction and planning: Playing games with

motion prediction models,” 2022. [Online]. Available:

https://arxiv.org/abs/2204.02392

[43] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov,

C. Li, and C. Schmid, “VectorNet: Encoding HD maps

and agent dynamics from vectorized representation,” in

2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, Jun. 2020. [Online].

Available: https://doi.org/10.1109/cvpr42600.2020.01154

[44] J. J. Arsanjani, A. Zipf, P. Mooney, and

M. Helbich, Eds., OpenStreetMap in GIScience.

Springer International Publishing, 2015. [Online].

Available: https://doi.org/10.1007/978-3-319-14280-7

622

