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Abstract—Trajectory prediction of road agents plays important

role in road traffic safety. Both autonomous vehicles and

roadside units can benefit from it. Other than the prediction

accuracy, many design constraints should be taken into consid-

eration like the simplicity of the model. A simple model will

be executed using the limited available resources of IoT units

in real-time. In this paper, a model based on a Graph Neural

Network is proposed that uses both the spatial and temporal

information for trajectory prediction in a fully context-aware

environment. The model solves the normal issues of Deep

Graph Neural Networks like over-smoothing. It also predicts

the trajectory of all the surrounding agents collectively without

the need to iterate it. Also, the computational workload can

be distributed among road agents using their communication

capabilities to cooperate in predicting the trajectories.

Keywords–Road Safety; Spatial-Temporal model; Vehicle Tra-
jectory Prediction; Deep Graph Neural Network

1. INTRODUCTION

The prediction of the trajectory of autonomous vehicles (AV)

is a major component of the autonomous vehicles technology

stack [1]. AV trajectory prediction helps a vehicle determine

what’s the expected driving actions of surrounding vehicles.

Other components in the stack include sensing where sensors

(cameras, lidar, radar, etc.) collect raw data about the car

surroundings. The perception component of the stack extracts

information for such raw data. For example, information about

surrounding objects (e.g., other vehicles, pedestrians, signs,

. . . etc.) and their relative distance from the ego vehicle. The

perception component can accurately enclose such objects

(a.k.a. road agents) in 2D or even 3D coordinates. A third

component of the stack is a localization module that accurately

places road agents on a high-definition map. Other components

of the stack include route planning and vehicle control (e.g.

drive by the wire).

AV trajectory prediction has recently gained much more fo-

cus; especially, after a few reported AV accidents in 2021.

Trajectory prediction will help to increase the safety of AVs

and other vehicles for travelers, pedestrians, and other road

users [2]. Statistics show that in the US alone, the number

of fatalities and injuries due to vehicle crashes changed from

36k and 2.74M in 2019 [3] to 38.7K and 2.28M in 2020 [4],

respectively. In the US, car accidents among other uninten-

tional injuries are ranked the third leading cause of death in

2019 [5]. Worldwide death count due to road crashes soars

up to 1.35M in 2018 [6]. Reducing traffic accidents has also

an economic impact as the estimated worldwide cost of traffic

road accidents from 2015 to 2030 is 1.35 trillion dollars [7].

Vehicle trajectory prediction can also play a significant role

in road network operations and management [8] used in Intel-

ligent Transportation Systems (ITS). For example, trajectory

prediction can estimate the possibility of a road accident

(and /or traffic buildup) in the nearest future (e.g., a few

seconds ahead). Trajectory predictions can be deployed on

roadside units (RSU) [9] that have been recently deployed

on roads in various countries. An RSU is a unit with sophisti-

cated communication and computation capabilities. It typically

collects information about road agents [10], and possibly

relays such data to other destinations on the Internet. It can

also apply trajectory prediction to determine control actions

to optimize traffic. Control actions typically involve giving

warnings and recommendations to road agents; including, for

example, varying the maximum travel speed along a road or

across lanes of the road. This system is a discrete feedback

control system in which the computational speed is a crucial

factor in determining system stability & efficiency.

For such a real-time application, both the accuracy and the

computational time of the prediction algorithm are crucial. Ex-

tensive deep-learning neural networks have shown promising

results in trajectory predictions. With extensive datasets, the

neural network is trained to identify patterns of movement of

road agents; it relates movement information of a particular

time step (current) to those of previous time steps (historical).

Once the neural network reaches an acceptable accuracy, the

trained network would have encoded in its architecture enough

information to be able to use real-time information to estimate

the trajectory of the surrounding road agents in the nearest

future.

In the past decade, datasets related to the trajectory prediction

problem were collected and published. These datasets were

collected by AVs driven on the road for thousands of hours, by

drones, and by fixed cameras and sensors deployed on the side

of the road. In this paper, we use LevelxData datasets collected

by drones that hover over a road segment and capture videos

that monitor traffic flow. The videos are processed to generate

the dataset. LevelxData includes various datasets (HighD [11],

InD [12], RounD [13], and ExiD [14]) collected for various

traffic scenarios. For example, HighD captures free-flowing

road/highway traffic while the traffic flows at intersections are

covered by InD. Turnaround traffic scenarios are captured in

RounD and on- and off-ramping scenarios are considered in
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the exiD dataset.

In this paper, we create and propose a deep neural network

model based on Graph Convolution Networks (GNN) that

can predict the trajectory of road agents in a fully-aware

context. The proposed model predicts the trajectory of all

surrounding vehicles at the same time. The model can be

distributed and executed in parallel between the road agents.

The model overcomes various issues of generic Deep Neural

Network models such as over-smoothing [15]. The model is

trained using the RounD dataset [13]. The RounD dataset is

collected over different 24 turnaround locations in Germany.

This dataset contains many driving patterns that can be learned

by a deep neural network. Due to the complexity of entering,

driving through, and exiting a turnaround, prediction trajectory

can be used to intelligently control the turnaround and evaluate

its safety. Fig. 1 shows how a drone is used to collect the data

from a turnaround. The dataset contains information about 6.6

driving hours sampled with a rate of 25 samples per second.

It also contains almost 28k different road agents distributed

among seven different classes; bicycle, bus, car, motorcycle,

trailer, truck, and van. Also, an image of the captured scene

is provided with an accuracy of about a pixel per 10 cm.

Figure 1: Turnaround scene Captured by a drone for RounD

dataset [13]

2. RELATED WORK

Trajectory prediction methods in the literature can be catego-

rized into three main classes based on how much vehicular

context is considered. The context takes into consideration the

surroundings around the car.

2.0..1. Context-free methods

that use only the history of the ego vehicle to learn the driving

pattern of the driver. Traditional machine learning models,

such as the Monte Carlo method [16], Bayesian networks

[17], Hidden Markov Models (HMM) [18], and Conditional

Random Fields [19], were applied to deal with the problem.

Also, different types of Recurrent Neural Networks (RNN),

for example, Long Short-Term Memory (LSTM) with manual

feature engineering [20], [21] as well as an RNN combined

with conditional variational auto-encoders (CVAE) [22] were

used to solve this problem. These methods are basically

designed for time-sequence prediction which is a different,

but related, problem. These methods are not the best choice

for the trajectory prediction problems because a driving action

doesn’t depend only on the driver’s history but also on the

driving context. For example, drivers tend to slow down in

crowded scenes. These methods would simply perform poorly

in the prediction performance.

2.0..2. Context-aware methods

with these methods, the historical trajectory data of both the

ego vehicle and surrounding vehicles are considered. Thus, the

interaction between vehicles on the road can be encoded in ML

models. These methods are then considered spatial-temporal

methods. However, not all context information is considered

with these methods, for example, map data is not considered

in these ML models. In general, it can be divided into two

categories:

Graph-based models where a scene (or a frame) at a given

time step is represented as a graph in which nodes represent the

road agents and the interaction between them is represented by

edges. An edge between two agents exists when the distance

between them is less than a certain threshold. Vehicular history

is captured through several frames and is encoded as a list of

graphs. Graph Machine Learning techniques, such as Graph

Neural Networks (GNN) and Graph Transformer [23], [24],

are applied to learn and estimate the trajectory. Another

technique is to use a CVAE-based model to process both the

edges and the nodes of the graph [25].

On the other hand, matrix-based models use matrix notations

to capture road agents’ features according to their locations.

Then, machine learning models are then applied to learn

and predict behavior. For example, Meng et al. [26] project

the output of LSTM into a 2D grid. While spatial attention

mechanism [27] and social Pooling mechanisms [28], [29]

were utilized in processing such grids, Zhao et al. [30] use

Graph Convolution Networks (GCN) in parallel to increase

the prediction accuracy. By stacking 2D matrices at different

time steps, a 3D matrix is generated to capture historical in-

formation. A GRU-based encoder-decoder [31] or an encoder-

decoder model combined with a CNN [32] are used to process

such 3D matrix. However, stacking features into a matrix

opens the door for new questions related to the order of

stacking and the fixed dimension of the matrix. Others have

tried using a CNN followed by LSTM [33] to process the

matrix information and the temporal information of the 3D

matrix.

Because of the lack of map information, the prediction quality

of context-aware models produces acceptable results in only

simple and fixed scenes; for example, along a highway with

straight lanes. In addition, these models typically lack a

standard architecture for spatial-temporal modeling of data and
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hence they typically use domain-specific datasets. This leaves

various models for various domains.

2.0..3. Fully context-free methods

where map information and historical data of the ego and

surrounding vehicles are included in the model. A typical input

to such models is a list of images that consists of a) map

images that describe the road, lanes, traffic light, and other

stationary information, b) a set of images containing the ego

agent locations, c) a set of images containing the surrounding

road agents. All images except the map image are binary

images. The images are rotated, translated, and cropped such

that the ego agent will be at a certain location and orientation

at the current time step (t = 0). Models that accept this type

of input are called Bird’s Eye View (BEV) models as they

are looking at the scene from high above similar to a bird.

For example, the Lyft level 5 dataset [1] enabled the proposal

of many such models. All these models used the semantic

map generators provided by the Lyft toolkit. Fig. 2 shows an

example of converting a scene in the RounD dataset, that we

study in this paper, into a BEV set of images for 15 history

frames.

Figure 2: The input to a BEV

To take advantage of the benefits of the recently well-designed

CNN architectures, CNN-based models are usually used to

process BEV semantic images to estimate the trajectory of

the ego agent. Because these models use semantic images,

the map information can be input into the model to construct

a fully context-aware model in a fixed dimension format.

Although this enables processing complex and general scenes,

the dimension of the set of images fed as input to the models

is much higher than the dimension of the actual input data.

This results in relatively higher computational power and time

requirements for these models. Examples include using ResNet

[34], EfficientNet [35], and convolutional-based CVAE [36] as

a backbone of models. These convolutional layers are typically

followed by an LSTM-based encoder-decoder network [37]

or a transformer-based encoder followed by an RNN-based

decoder [38].

It’s worthy to note that there is a loss of information due to

converting numerical data into semantic images (discretizing

locations into pixels and encoding information into the color

of the pixel). This limits the accuracy of such prediction

models. To remedy this loss of information, models have been

proposed to process the original numerical data in parallel to

the CNN processing. The output of these models concatenates

the output of both types of processing. LSTM encoders [34],

CVAE [36], [39], [40], and LSTM Encoder-Decoder [41], [42]

were used in the numerical branch of the models.

3. PROBLEM STATEMENT

Let At to be the set of all road agents, i.e., vehicles and

pedestrian, that belongs to a frame sampled at time t. Also, let

s
(i)
t ∈ R

d to be the feature vector of the ith vehicle (i ∈ At)

at time t which includes but is not limited to the location

of the agent, x
(i)
t = (x

(i)
t , y

(i)
t ). Given the history of the

ego vehicle (s
(i)
t ) and the surrounding road agents (st) for th

periods (frames) including the current state at t0, it’s required

to estimate the vehicle position for a horizon of tf . This can

be expressed by a function F such that

(x̂
(i)
t0+tf

,. . . , x̂
(i)
t0+1) =

F(s
(i)
t0
, . . . , s

(i)
t0−th−1

|st0 , . . . , st0−th−1 , η)
(1)

where η represents the driving scene information and x̂
(i)
t is

the estimation value of x
(i)
t . The goal is to find the function F

that minimizes the Square Error (SE) of the predicted values

as given by (2).

argminF
∑

i,t

‖F(s
(i)
t0
, . . . , s

(i)
t0−th−1

|st0 , . . . , st0−th−1 , η)

− (x
(i)
t0+tf

, . . . ,x
(i)
t0+1)‖2

(2)

4. METHODOLOGY

To estimate the trajectory of road agents, we propose an ML

model based on the Graph convolution layers that process

a heterogeneous graph generated from scenes of the RounD

dataset. In this section, we discuss graph generation and ML

model construction.

4.1. Graph Generation

We propose to generate and use a directed heterogeneous

graph consisting of a single type of nodes and two types of

edges. The nodes represent road agents. The edges are spatial

and temporal edges that encode the relation between different

road agents within the frame and between consequent frames.

To generate a graph, we propose a general technique that can

be easily applied to any dataset and doesn’t require any special

requirements. We use the proposed techniques with the RounD

dataset as an example. The technique follows the steps shown

in Fig. 3, as follows:

1) At each frame (time step), road agents are represented as

the nodes of a sub-graph.

2) Spatial edges are created to connect nodes at the same time

step (frame) if the distance between the agents is less than

30 m. Spatial edges are bidirectional; this implies that if

there is a spatial edge from node i to node j, there must

be another edge from node j directed towards node i.
3) Temporal edges are generated to connect the same vehicle

in two consequent frames. They are always directed from

the frame at time (t− 1) to that at time t.
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Figure 3: Steps to create the heterogeneous graph where red nodes and edges are agents and their spatial interaction at time

(t− 1), blue nodes and edges are agents and their spatial interaction at time t, and the green edges represent the temporal

relation between agents.

4) A feature vector is assigned to each node, as shown in Fig.

4. The vector consists of numerical data as well as a small

image representing the relative map and road information

visible to the node. The map information is transformed by

translation, rotation, and cropping such that the interesting

agent (ego) is always at a fixed location and direction

in the image. The numeric data can be divided into two

categories:

a) Agent type which is represented as a one-hot encoding

to model the seven available types of road agents.

The encoding uses six Boolean numbers which are

sufficient to represent the classes without having any

linear dependencies between them.

b) Agent dimension which consists of the agent centroid,

direction, and dimensions.

Figure 4: Node features

4.2. The proposed model

We propose a Deep Graph Neural network (DGNN) built

with skip connections and attention modules to overcome the

over-smoothing problem of DGNN. Data smoothing makes it

harder to distinguish between different computational graphs

at deeper layers of the model. Thus, the model would fail to

process the graph and predict the trajectory. Skip connection

is usually used by CCN [43] to increase the speed of training.

Attention is implemented by Graph Attention Network (GAT)

layers [44] that will intelligently update the embedding of

nodes depending not only on the graph structure but also on the

data. Both techniques will result in totally different processing

of information (passed from one layer to the other) and totally

different graph embedding even for the same computational

graph structure. The proposed model is shown in Fig. 5.
For every node in the generated graph, an initial embedding

(v(0)) is calculated by applying a ResNet-18 to the map image.

ResNet-18 is used because it’s a simple, light, and fast version.

As the image has been rotated before, the extracted features

from the ResNet layer have to be reoriented and translated

in world coordinates as all other numerals. Inspired by a

traditional 2D rotation matrix, the features are multiplied by

cos(θ) and sin(θ) where θ is the heading angle. Then, MLP is

applied to provide a sort of linear combination. The output of

the MLP is concatenated to the numerical part of the feature

vector to produce the initial embedding (v(0)) for this graph

node, which will be forwarded to the second layer where

information will pass through the temporal and spatial edges.

A GAT layer followed by a ReLU is used for the spatial edges

in order to give a higher score to (and consider more the)

surrounding agents because they affect trajectory prediction.

The normalized score is used to generate a weighted sum that

updates node embedding. This operation is independent of the

number of edges (surrounding agents). This will allow the

model to generally process any scene with any number of

road agents. As, there are two temporal edges per node; the

self-loop, and the vehicle at the previous time step, a simple

Graph Convolution Network (GCN) layer [45] is capable

of propagating the temporal information through the graph

and it will be coupled with a ReLU. Then, the spatial and

temporal embedding, as well as the skip connection of the

numerical features, are concatenated together to form the (v(1))
embedding of the second layer. Fig. 5 shows only a single node

but this will be repeated in parallel to other nodes in the graph.

At this point, the embedding of all the nodes of the graph at

the second layer will be calculated using only the information

propagated from nodes one hop away. Then, a similar layer

will be applied to produce the embedding (v(2)). Similarly,

this embedding will have information propagated from nodes

two hops away including the spatial and temporal information

at the current time steps, as well as the previous two time

step. By using (h − 1) layers, the information of h time

steps in both spatial and temporal edges is propagated into

the final embedding (v(h−1)). Finally, an MLP will be applied

to the final embedding to produce the final prediction which

will be 2f numerical values; f values for the x-coordinates

and f values for the y-coordinates. To prevent over-fitting,

609



Figure 5: The proposed model

dropout with probability of 0.2 is applied to all GCN and

GAT modules.
As the embedding of each layer depends only on the embed-

ding of the previous layers, all road agents can update their

embedding collectively. The embedding of the previous layer

can be exchanged by some sort of communication between

road agents. This is different than BEV models in which each

prediction is done individually with the need to iterate among

all road agents in the scene with no possibility of balancing

the prediction load between road agents.

5. RESULTS AND DISCUSSION

The proposed model is applied to the RounD dataset that

provides a raw dataset with high non-linearity and uncertainty

of the driving actions at turnaround scenarios. First, the graph

is generated for each scene of the 24 available scenes. As the

original frame rate is 25 frames per second, down-sampling

is used to produce a sampling rate of 5 frames per second.

The down-sampled data is used to generate the directed graph.

Taking the third scene as an example, the generated graph

consists of about 55k nodes, 204k spatial edges, and 54k

temporal edges. Almost 28K of the nodes have a complete

history and future data. Thus, they are considered interesting

cases and used in the training and testing processes. The

interesting cases are sampled such that 70% of the cases are

used for training while the remaining form the testing set.

The training set is used to tune the trainable parameters of the

model to optimize equation (2) while the testing set is used to

determine the best-trained parameters that can be in general

without any bias or over-fitting.
The Displacement Error DE is given by equation (3) and is

used to evaluate the prediction accuracy for a given interesting

case. It calculates the Euclidean distance between the ground

truth and the predicted location for vehicle i after a time of

ΔT from the current time t0.

DE(i,ΔT ) = ‖x(i)
t0+ΔT − x̂

(i)
t0+ΔT ‖2 (3)

Many evaluation metrics are usually used to evaluate the pre-

diction accuracy for the whole dataset. In this paper, Average

Figure 6: Trajectory prediction results

Displacement Error (ADE), given by equation (4), and Final

Displacement Error, given by equation (5), are used to evaluate

the performance of the proposed model with a traditional fully

context-aware model that uses ResNet-18 as a BEV model to

process the semantic maps to predict the vehicle trajectory.

ADE(ΔT ) =
∑

i

DE(i,ΔT ) (4)

FDE = ADE(tf ) (5)

For both models, the history period (th) and the future horizon

(tf ) are 3 seconds (15 time-steps). Both models are trained

using the same training set and the same stop criterion based

on the same testing set is used to control the training loop.

The prediction of all the cases is evaluated using ADE and

the results are shown in Fig. 6. As shown in the results the

ADE of the proposed model has less error than the BEV

model for all time steps. Although, the error for both of them

increases as the prediction time increases, FDE shown as the

final point in the figure is also lower in the case of our model.

Table I shows the average value of FDE in meters for each

agent type. As the values are close, This illustrates that the

model is able to distinguish the different types of traffic agents.
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Type FDE (m)

bicycle 1.742

bus 0.668

car 1.729

motorcycle 1.581

trailer 1.573

truck 1.510

van 1.484

TABLE I: Average FDE for different agent types

Figure 7: Trajectory prediction results

Also, the model can understand the different dimensions of

different road agents. The average FDS value of the trucks,

vans, trailers and motorcycles is less than those of others types.

A possible reason can be because of they usually are relative

slower than other types. Buses also has a very small FDE but

this can be due to over-fitting as buses is rarely represented

among the dataset (< 0.1%).

Figure 7 is used to prove that the model works well even for

aggressive driver. As the type of driving is not included in the

dataset and in order not to add our personal prospective into

the data to avoid any sort of bias, the FDE of the prediction is

divided into separate sets according to the average speed of the

agents. A boxplot is drawn to show the first quartile, median,

and the third quartile of each set. As shown in the figure, the

three values are close in every set while the maximum FDE
is small for agents with high speed.

6. CONCLUSION

Trajectory prediction of road agents plays an important role

in maintaining road traffic safety. It’s an essential component

in the AV stack as well as in real-time road traffic control.

The prediction should be fast, simple, accurate, and fully

context-aware. Related works use a very high dimensional

input as a set of semantic maps in a traditional BEV to predict

the trajectory of a single vehicle. In this paper, a model is

proposed that can predict the trajectory of all road agents in

a turnaround-driving scene. The proposed model is applied

to a heterogeneous graph that encodes both the temporal and

spatial information in the same structure. It overcomes the

over-smoothing problem due to the large number of hops in

the graph. The model was able to estimate the trajectory of

all the vehicles in the frame at the same time with an error of

fewer than 1.7 meters for a horizon of 3 seconds.

An algorithm is also proposed to generate the graph in which

each vehicle is represented as a node and the map information

locally viewed by the vehicle is placed as a feature for the

node. Two types of directed edges are used to represent the

temporal and spatial relation between nodes. The model is

designed based on Deep Graph Neural Networks.

Although the number of images per node processed by the

model is reduced to one image instead of (2h+1) images used

by BEV models, It’s still needed in future work to propose

another numeric presentation of the road map to reduce the

model complexity. Future work can also include parameter

sharing between layers to reduce the model size and training

time.
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