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Abstract—Trajectory prediction algorithm is an important 

component of autonomous driving system (ADS) or 

advanced driver assistance system (ADAS), which enable 

autonomous vehicles to evaluate critical tasks in advance thus 

reduce vehicle collisions and improve traffic safety. Most 

existing trajectory prediction methods suffer from difficulties 

in portability and application across coordinate systems. To 

address these difficulties, this study proposes an easy-

portable, vehicle displacement-offset-based trajectory 

prediction model, which can be rapid deployed and reused in 

different highway road sections and does not require second 

training. Specifically, first a novel trajectory sampling 

method to homo-dimension the vehicle data of different 

lengths is proposed. Second, the traditional neural network 

used for sequence prediction is modified to develop an 

enhanced trajectory prediction model, and which is trained 

and tested using the input reduction method. Finally, the 

trained model is saved locally and embedded in a co-

simulation environment composed of CARLA, SUMO and 

Keras, afterwards the proposed method is tested in real-time 

simulation and across coordinate systems. The experimental 

results show that the proposed method can be quickly ported 

and deployed for reuse without second training, and has a 

fairly high prediction accuracy and long prospective time. 

Keywords-autonomous driving, trajectory prediction, model 
porting, simulation testing, neural network. 

1. INTRODUCTION  

1.1. Motivation 

Autonomous driving has attracted tremendous attention 

worldwide due to its great benefits in improving 

transportation efficiency and safety [1]. An autonomous 

driving system (ADS) contains many algorithms, and the 

individual algorithms cooperate with each other to provide 

the different functions of the ADS. Currently, autonomous 

driving is in an important transformation stage from group 

testing to practical application, and virtual simulation testing 

has become one of the main methods for autonomous driving 

testing due to its advantages of low cost, repeatability, and 

rapid deployment [2,3]. Trajectory prediction, as one of the 

important technologies in autonomous driving, enables the 

driver or ADS in an autonomous vehicle to evaluate critical 

tasks in advance and adjust the vehicle motion state to avoid 

traffic congestion and collisions. Therefore, how to perform 

fast and efficient trajectory prediction algorithm development 

with high portability and test it has become a hot research 

topic, where Portability refers to the ability of a model to 

quickly transfer to another scenario for prediction. In addition, 

with simple traffic flow and less random disturbance in traffic 

environment, highways are one of the preferred road sections 

for autonomous driving deployment. In summary, the 

development, testing, and portability of trajectory prediction 

algorithms in highway scenarios have significant research 

value. 

1.2. Related works 

Currently, a number of research exist for trajectory 

prediction, which have modeled trajectory prediction in 

different scenarios based on different data characteristics. 

The focus of trajectory prediction is to analyze the 

relationship between the historical motion state and the future 

motion state of vehicles and model this relationship. 

According to different modeling methods, the currently 

existing trajectory prediction methods can be divided into 

mathematical inference models and data-driven models, and 

the following content will review the representative studies. 

Mathematical inference models (MIMs): MIMs focus on 

analyzing the functional relationship between historical 

parameters and future trajectories, and describe the 

relationship as an explicit function. The most typical model 

based on mathematical inference is the use of polynomials for 

trajectory modeling. Back in 1989, Nelson [4] used polar 

coordinate polynomials and Cartesian polynomials to model 

the trajectory of a vehicle in a straight line to a circular arc, 

ensuring accuracy when tracking vehicle trajectories. Trieu 

Minh Vu et al. [5] proposed a method for generating vehicle 

trajectories based on multiple polynomials considering the 

restrictive relationship among different vehicle motion 

parameters, which can be applied to the route generation 

function of automatic parking. Calvin Kielas-Jensen et al. [6] 

presented a method for the generation of trajectories for ADS, 

which is based on Bernstein polynomial approximations to 

transcribe infinite dimensional optimization problems into 

nonlinear programming problems. Similarly, Wang et al. [7] 

predicted and generated lane change trajectories for 

autonomous vehicles on highways using seven polynomials, 

and the usability of their method was demonstrated by real 

vehicle experiments. Nunzio A. Letizia et al. [8] presented a 

novel recursive smooth trajectory (RST) generation 
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algorithm for application in robotics based on polynomial, 

and the effectiveness of the proposed algorithm is 

demonstrated numerically via two illustrative scenarios. To 

find the optimal trajectory of an autonomous vehicle, Vu 

Trieu Minh and John Pumwa [9] modeled and analyzed the 

vehicle trajectory using symmetric polynomial, and 

experiments demonstrated that the proposed method can 

generate smooth trajectories for the control of autonomous 

vehicles. Ming et al. [10] proposed a quintic polynomial-

based trajectory planning approach to generation comfort and 

safety trajectories. In addition to various polynomials, hidden 

Markov models (HMM) have also been applied to trajectory 

prediction. Ye et al. [11] proposed a new trajectory prediction 

model based on HMM, and their proposed method was 

experimentally shown to be quite accurate. Aiming at the 

problem that conventional models can not accurately 

describe the trajectory of vehicles in a network-constrained 

environment, Qiao et.al [12] proposed an HMM-based 

adaptive parameter selection trajectory prediction model for 

autonomous vehicle. Moreover, Gaussian related models are 

also widely used in trajectory prediction, in [13], a variational 

probability trajectory model based on Gaussian mixture and 

Bayesian is proposed, which can predict the trajectory of 

vehicles within 2s. Georges et al. [14] proposed a flexible 

non-parametric hybrid Bayesian model to represent the 

trajectory distribution and good results were achieved. There 

is no doubt that MIMs have made great achievements in 

trajectory prediction, but the disadvantage of MIMs is that 

their generalization ability and feature extraction ability are 

not strong, so the models cannot be ported quickly, therefore, 

data-driven models are introduced. 

Data-driven models (DDMs): DDMs focus on extracting 

correlations between input and output, most of the data 

features are extracted in a black-box manner. DDMs 

represented by neural network-based models have been used 

extensively. Depending on the type of input data, DDMs can 

be broadly classified into models based on image and models 

based on time series data. Using images from the driver's 

perspective as input, Sun et al. [15] proposed a semantic 

segmentation model that can generate predicted trajectories 

directly on the current image. Similar to [15], Fang et al. [16] 

proposed a motion prediction framework with two phases for 

vehicle trajectory prediction using image data. In order to 

quantify the uncertainty of pedestrians, Probabilistic 

Population GAN (PCGAN) was proposed in [17], which can 

quantify pedestrian behavior under different traffic 

conditions to determine the impact of different behaviors on 

traffic, thereby adjusting the current traffic state. Different 

from the above research, Tang et al. [18] proposed a 

probabilistic-based framework for modelling future vehicle 

motion state using bird's-eye view images of a specific road 

section. As can be seen, the advantage of the image-based 

model is that the image data is easy acquired, sometimes only 

one camera is needed, and the collected data does not require 

much processing. However, when running the trajectory 

prediction algorithm, the image-based model requires 

powerful hardware support to meet the arithmetic 

requirements. Therefore, time series-based models are 

introduced. Time series data requires more sensors during 

acquisition as well as frame alignment and other operations 

after the acquisition is completed, but time series data-based 

models do not require strong hardware support after training 

and are less costly than image-based models in general. For 

example, Hui et al. [19] proposed a combinatorial neural 

network model to predict trajectories including highways, 

intersections, and roundabouts using time series data, and 

obtained good results. Based on the Encoder-Decoder 

structure, Wei et al. [20] proposed a fine-grained prediction 

model for highway scenario, which can predict the velocity 

and trajectory, in addition, they also propose a joint 

simulation environment for real-time simulation of the 

proposed prediction models in [21]. Similarly, a large number 

of studies [22-28] have used LSTM or combined variants of 

LSTM for trajectory prediction modeling. In summary, the 

extant studies may have the following shortcomings: 

� Some of the studies focus on analyzing the relationship 

between historical and future trajectories and use coordinates 

in the absolute coordinate system as model inputs, which may 

result in the model not being usable across coordinate 

systems and maps. 

� Some studies focus on the construction of trajectory 

prediction methods and theoretical performance analysis, 

without real-time simulation testing of the model, which may 

lead to the usability of the model in doubt. 

� Some of the high-complexity models ignore the 

hardware and software costs in practical applications, 

resulting in low utility of the models. 

Based on the above shortcomings, this study proposes a fast, 

efficient, and portable neural network model based on time 

series data for real-time simulation across coordinate systems 

to fill some research gaps. 

1.3. Paper organization 

The remainder of this study will be organized in the following 

way. Section 2 provides a detailed description of the dataset 

used and its processing method; Section 3 carries out the 

construction and description of the prediction model 

according to processed data characteristic. Section 4 tests the 

proposed model using a co-simulation approach. Finally, 

Section 5 concludes the paper and describes future research 

directions. 

2. DATA PREPROCESS 

It is known from previous studies that vehicle trajectories are 

not only related to historical trajectories, but also to historical 

vehicle motion states, so the data used needs to include both 

of these types of data. Based on the above requirements, 

HighD, a publicly available dataset from Germany [29], was 

selected as the data base for this study. 
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2.1. Data introduction 

The data in the HighD dataset is derived from naturally 

driven vehicles on German highways [30], and all data is 

obtained from drones with fixed viewpoints above the 

highways, and the time series data has been extracted using a 

state-of-the-art computer vision approach, and with the error 

less than 10cm. Therefore, due to the characteristic of 

richness and accuracy of the data, this dataset is selected as 

the data basis for this  study. 

The HighD dataset contains data from several highway 

sections, and the length of its collected sections is about 400 

meters. One of them is shown in Figure 1. According to the 

data requirements, the data under five identical road sections 

are selected as the basic data in this study. These data are 

stored under different files and their details are shown in 

Table 1. However, due to the large amount and similarity of 

the data, too much data overlay display will cover the details 

of the data, so the data in file No.25 will be used as the sample 

for subsequent data display in this study. In addition, the 

original data in the HighD dataset is high-dimensional and 

unequal in length, which cannot be directly applied to the 

neural network model in this study, therefore, this data needs 

to be processed in a secondary way, and the subsequent 

content will be carried out to introduce the data processing 

method. 

2.2. Data preprocess 

The HighD dataset is collected at a fixed viewpoint with 

equal frequency, so the faster vehicles have shorter data 

sequences and the slower vehicles have longer data 

sequences. However, the neural network model requires 

fixed-length inputs, and since the VKD and VTD of vehicles 

are correlated, this study uses the VTD as the basis for 

sampling the entire data.  

Analyzing the data in the HighD dataset, it can be concluded 

that there are two types of vehicle trajectories on the highway, 

the first are lane keeping trajectories dominated by nearly 

straight lines and the second are lane changing trajectories 

dominated by curves, according to the above characteristics, 

this study proposes a data sampling dimensionality reduction 

method. Suppose the number of sampling points is denoted 

by , then it is expressed by: 

_ / _ ,sampling inter length sampling times� � �� �  

 (1) 

 

where  denotes the length of a vehicle trajectory, and 

the trajectory lengths of each vehicle are usually not equal 

and need to be acquired in real time during computation. 

 
Figure 1.  One highway section from the HighD (No. 25) 

 

Table 1. Selected road sections  

Selected file No. 4 7 11 25 31 

Number of vehicles  1,163 855 1,776 2,850 2,254 

 

Further, assume the index of a coordinate on a trajectory is 

, then, if  and 

 satisfy the following relationship: 

 

_ % 0,trajectory index sampling_inter �   (2) 

 

the trajectory coordinate point corresponding to 

 will be selected as a sampling point, and 

the sampling operation will continue until the whole 

trajectory is facilitated. It should be noted that the "%" in (2) 

represents the modulo operation. Using the above method, 

the original data can be substantially downsized. However, in 

order to ensure that the sampled trajectories have the same 

composition of coordinate points, this study will process the 

sampled trajectories again, if the number of coordinates of the 

sampled trajectories is greater than the number of samples, 

the penultimate coordinate at the end of the trajectory will be 

removed. 

In summary, it can be seen that the key parameter of the 

sampling algorithm is the , which 

represents the number of coordinate points of the trajectory 

after surrogate raising, in order to get the optimal 

, this study uses the method of multiple 

comparisons, and the results of the comparisons are shown in 

Figure 2(a), which shows that the sampled trajectory can be 

well fitted original trajectory when , 

so the  of the trajectory in this study will be 

determined as 14. 

After the sampling is completed, some irregular vehicle data 

(the 70th vehicle in file No. 25, the 28th and 29th vehicles in 

file No. 11) are again eliminated, and the basic data that can 

be used in this study can be obtained. Taking file 25 as the 

display sample, the trajectory after sampling using the above 

method is shown in Figure 2(b). 

 

 
(a) 

 

 
(b) 

Figure 2. (a) Sampling results under different sampling 

times and (b) sampled trajectories in file No.25 
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However, considering that part of the sampled data is to be 

used as model inputs and some as model labels, it is also 

necessary to segment the sampled data. In addition, due to the 

characteristics of the above sampling method, the distance 

between two coordinate is not equal, which means that after 

segmenting the data with ratio 1:1, the data on both sides of 

the segmentation point also have different trajectory lengths, 

and this feature can solve the problem that the model has 

different sampling frequencies for sensors in practical 

applications. After segmenting the sampled trajectories in a 

1:1 ratio, the segmentation points are visualized to obtain the 

results shown in Figure 3. However, it can be seen from 

Figure 3 that the data on both sides of the data segmentation 

point is not enough, when using such a data set in training the 

model, the model may converge to an intermediate state. In 

order to solve this problem, the model will gradually reduce 

the segmentation ratio during training to make the model 

generalize as much as possible. Once the data processing is 

complete, the subsequent content will carry out the 

construction of the prediction model. 

3. METHODOLOGY 

In this section, the types and formats of input and output data 

are described based on the sampled and segmented data, 

afterwards the trajectory prediction model is designed and 

trained based on the data characteristics. 

3.1. Input and Output description 

As mentioned before, one of the contributions of this study is 

to solve the problem that the model cannot be reused across 

coordinate systems to a certain extent. Therefore, different 

from existed studies, this study changes the idea of analyzing 

the relationship between historical trajectory and future 

trajectory, transposing the input and output of the model into 

the velocity sequence and displacement sequence of the 

vehicle, respectively. 

Based on the processed data, it can be seen that the main input 

when the model starts training consists of seven velocity 

points and seven environmental data points. Based on the 

characteristics of data processing, this study selected seven 

distance headway point corresponding to the velocity 

sequence as auxiliary inputs, which are  in (3). As 

the training advances, the actual coordinate number of the 

input will gradually reduce, but the input length will remain 

the same, so the vacant positions will be replaced by 0. In 

addition, the label data consists of six relative displacement 

values, and the length of the label data will become smaller 

as the model is trained, but in order to fit the network, the 

labels will be indented with the trailing data discarded to keep 

the data length constant. In summary, the input and output of 

first round can be expressed as: 

 

1 7 1 7[ ,..., , ,..., ],input v v e e�   (3) 

 

1[ ]  ( 6,5,..., 2,1).i ilabel d d i�� � �  (4) 

 
Figure 3. Statistics of segmentation points of trajectory data 

 

where denotes the coordinate of the vehicle. When the 

model starts the next round of training, the input and labels 

shrink, the label number remains the same, but the input will 

undergo data discard, which can be expressed as: 

 

1 6 1 6[ ,..., ,0, ,..., ],input v v e e�   (5) 

 

After the completion of multiple rounds of training, the 

model in the optimal epoch will be saved locally in .h5 format 

for testing. 

3.2. Trajectory prediction model design 

According to the characteristics of the input and label 

described in the previous subsection, a neural network-based 

trajectory prediction model is designed, which has a vector of 

[14 1] as input and a vector of [6 1] as label, but the vehicle 

trajectory is divided into two directions: lateral and 

longitudinal, so the model should contain two parallel 

modules to predict the displacement in both directions 

simultaneously.  

In conventional studies, as shown in Figure 4, the Encoder-

Decoder structure with a long short term memory network 

(LSTM) as the computational core is often used for the 

prediction of time series, and its input and label are both a 

time series and mostly the same kind of data. However, such 

a structure may not be suitable for making predictions of 

different kinds of time series data, and cause a decrease in 

model accuracy. In addition, most of the studies can be 

classified into many-to-one (M2O) or many-to-many (M2M) 

problems depending on the relationship between the input 

and the output. In general, M2O is a classification problem, 

which requires fusion of the input data, and M2O is a 

regression problem, which requires sequence-to-sequence 

mapping. Since the input of this study contains both sequence 

data and some discrete environmental data, both the M2O 

problem and the M2M problem are included in this study, 

which requires the model to have both the ability of data 

fusion and data regression. In view of the excellent data 

fusion capability of the fully connected neural network and 

the sequence data mapping capability of the Encoder-

Decoder structure, this study therefore modifies the Encoder-

Decoder structure by adding a fully connected layer to its first 

layer to form a combined network module as the basis of the 

prediction model. 

First, the conventional Encoder-Decoder is modified, and 

both Encoder and Decoder are changed to bi-directional 

Encoder and bi-directional Decoder with bi-directional 
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propagation capability in order to improve its forward and 

reverse data mapping capability. In addition, due to the 

shortening characteristic of the input data in this study, then 

the first layer of the fully connected network is required to be 

able to perform adaptation for different input lengths, so 

some neurons in the first layer of the fully connected network 

are set as conditionally deactivated neurons to match 

different input lengths in this study. The trajectory prediction 

module designed according to the above description is shown 

in Figure 5. 

It can be seen that this study uses a combined fully connected 

network and encoder-decoder structure, setting the input to 

this structure as a sequence , when  

crosses the first layer, the encoding work is performed to 

obtain the hidden-layer output at time , which is: 

 

1( , ),t t th f x h ��    (6) 

 

LSTM LSTM LSTM...

LSTM LSTM LSTM...

1x
2x...x tx

1c2c...ctc

1y2y...yty

1p2p...ptp

 
Figure 4. Conventional LSTM-based Encoder Decoder 
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Figure 5. Enhanced trajectory prediction model 

when the model starts its first forward computation, its 

internal weight parameters will be randomly generated by the 

deep learning library, and the initial hidden state  is 

automatically calculated. 

After the encoding work is completed, the final state of the 

encoder is the fixed-dimensional semantic vector , which 

can be expressed as: 

 

1 2( , ,..., ),tc q h h h�    (7) 

 

subsequently, the decoder uses the semantic vector 

 to decode and calculate the prediction result  

at time t as follows: 

 

1 1 2 1( ) ( | , ,..., , ).t
t t tp y p y y y y c� �� �  (8) 

 

Since the features of the encoder-decoder are propagated as a 

sequence, after considering the intermediate state of the 

decoder’s hidden layer, the probability of a step  can be 

expressed as: 

 

1 2 1 1( | , ,... , ) ( , , ),t t t tp y y y y c g y s c� ��  (9) 

 

where  denotes the state of the decoder’s hidden layer at 

time , and  is a nonlinear function. Therefore, the 

probability of obtaining the final output  is expressed as: 

 

1 1( ) ( , , ),t
t t tp y g y s c� �� �   (10) 

 

After obtaining the output of the encoder, the decoder starts 

its work with the task of modelling the conditional probability 

distribution of the predicted results. If no other information 

intervenes at this point, the decoder will output the 

conditional probability of  at moment , which can be 

expressed as:  

 

1 2 1 1( | , ,... , ) ( , , ),t t t t tp y y y y x g y s c� ��  (11) 

 

where  denotes the output of the RNN’s hidden layer at 

time . Thus, it can be written that: 

 

1 1( , , ).t t t ts f s y c� ��    (12) 

 

After completing the forward propagation, the neural 

network uses a backward propagation algorithm to optimize 

the weights and thus obtain the optimal network. 

The above explains how the model works and the prediction 

model, after completing the interpretation of the proposed 

trajectory prediction model, it can be used to construct a 

trajectory prediction model suitable for both lateral and 

longitudinal directions. The structure of this model is shown  
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in Figure 6. It can be seen that the model is capable of 

performing parallel  
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Figure 6. Trajectory prediction model 

input of data in both directions, and after computation, it 

outputs two displacement vectors in both directions 

simultaneously. The predicted trajectory can be obtained by 

superimposing the displacements. 

When the model predicts the displacement, the current 

coordinates are obtained, then the predicted trajectory is 

obtained by superimposing the predicted lateral and vertical 

displacements. 

3.3 Model training and testing 

Once the model is designed, it is constructed and the trained 

using the data described in Section 2.  

Since this study considers the challenges posed by real-time 

simulation tests on the prediction model, it is necessary to 

consider the time consumption of the model for one 

prediction task in addition to traditional studies comparing 

metrics such as root convergence mean square error (C-MSE) 

and epoch (CE). Using the data with different reduction ratios 

for training and testing, the MSE performance of the 

predicted model in both lateral and longitudinal directions are 

shown in Figure 7. 

The MSE of the model during training and testing is shown 

in Figure 7. It can be seen that both the lateral and 

longitudinal MSEs converge in the region after a certain 

number of epochs, and the convergence MSE is relatively 

small. In addition, the time consumed by the model to execute 

a task is statistically analyzed, and the results shown in Figure 

8 are obtained. It can be seen that the time consumption of 

one module in executing one task is under 0.04 microseconds, 

and even if the lateral and longitudinal modules work serially, 

the time consumption is under 0.1 microseconds, which can 

be said to complete the prediction task instantaneously. 

Therefore, at the level of time consumption, the model is able 

to meet the requirements of the simulation. The trained model 

is saved locally in .h5 format to enable real-time simulation, 

so in the next section, this study will test the trained model 

by real- time simulation. It should be noted that “I:L” in the 

Figure 7 refers to the ratio of effective input to output (IOR). 

  

 
(a) 

 
(b) 

Figure 7. (a)Lateral and (b)longitudnial MSE in traning and 

testing process 

 

 
Figure 8. Time consumption of the model under different 

input label ratios 

4. REAL-TIME SIMULATION 

Real-time simulation of the proposed trajectory prediction 

model will be performed in this session. First, the simulation 

environment is constructed based on the model input data 

characteristics, and then the trained model is embedded into 

the simulation environment and acted on a certain vehicle to 

perform real-time trajectory prediction. Finally, the results of 

the simulation are analyzed. This study builds the model on a 

computer with a window 10 operating system and an i5-8500 
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CPU and 16 GB of RAM, the deep learning libraries used are 

TensorFlow 2.2.0 and Keras 2.3.1, the programming IDE 

used is Spyder 4.1.3. 

4.1. Simulation environment construction 

From the previous section, it is known that the model input 

of this study requires the vehicle velocity sequence and the 

distance headway sequence, and therefore, both of these data 

are required during the simulation. At present, the 

mainstream traffic simulation software includes CARLA, 

SUMO, CARSIM, etc., and each software has its own 

focused functions. In this study, the generation of highway 

traffic scenario and the collection of some traffic parameters 

are required for the simulation, and CARLA and SUMO can 

meet the above requirements, so CARLA and SUMO are 

used for the co-simulation in this study. The basic steps of 

CARLA-SUMO co-simulation can be found in the official 

document of CARLA [30], which achieves the 

synchronization of CARLA and SUMO, but other 

information need to design the independent communication 

function to transmission. Referring to our previous research 

[31], this study used UPD sockets for information 

transmission, and the same co-simulation architecture shown 

in Figure 9 is applied in this study. 

Based on the co-simulation architecture shown in Figure 9 

and the characteristics of the data required for this study, the 

functions of each software in this study as follows: 

� CARLA: Perform the generation of highway scenario 

and vehicles, sensing of vehicle kinematic data, and 

visualization of the predicted trajectories for output. 

� SUMO: Synchronize the traffic scenario generated by 

CARLA to obtain the traffic flow data that cannot be sensed 

by CARLA, i.e., the distance headway data sequence data in 

this study. 

� Keras: Provide basic construction methods for 

trajectory prediction models, perform model training and 

testing, and localization, preservation of the completed 

training models. 

� TensorFlow: Acts as a backend for Keras, providing 

support for the computation of vectors in the model, the 

output of predicted trajectories, and data regularization. 

For the actual simulation, a UDP socket for sending and 

receiving information is also written to each process for the 

exchange of information between different modules, the flow 

of which is shown in Figure 9. After the simulation 

environment is constructed, the trained model is tested. 

4.2. Simulation testing and results analyze 

One of the contributions of this study is that no secondary 

training is required when porting the model to another 

scenario with a different coordinate system. Therefore, part 

road sections shown in Figure 10 of town04 in CARLA was 

selected as the test route for this study. In the simulation, the 

distance headway sequence is obtained from SUMO, the 

velocity sequence is obtained from CARLA, then the two 

data are combined and encoded into a byte stream sent to the 

trained model. The model calculates the predicted vehicle 

displacement, superimposes the displacement to get the 

predicted trajectory, and then sends it to CARLA for display. 
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Figure 9. CARLA-SUMO-TensorFlow-Keras co-simulation 

environment architecture 

 

  
Figure 10. Selected test road section in CARLA 

 
I:L=7:6 I:L=6:6

I:L=5:6

I:L=4:6 Predicted trajectory

Predicted coordinates

Predicted trajectory

Predicted coordinates

Predicted coordinatesPredicted coordinates

Predicted trajectoryPredicted trajectory

 
Figure 11. screenshots of predicted results 

 

Based on the above-mentioned methods, different models 

were tested and part of the test screenshots are shown in 

Figure 11, the points in the figure are the predicted 

coordinates, the black line is the predicted trajectory formed 

by connecting the predicted coordinates. It can be seen that 

the predicted trajectory and the vehicle driving trajectory are 

compatible, the trajectory prediction model can operate 

normally. However, Figure 10 does not show the overall 

performance of the model, so the results of multiple 

experiments are statistically analyzed for numerical 

information in this study. 

Based on the characteristics of the input and output data, it 

can be determined that the model has two key evaluation 

metrics, the first one is the average theoretical prospective 

603



time (ATPT) for evaluating the prediction range and the 

second one is the average lateral/longitudinal prediction 

accuracy (ALPA) for evaluating the prediction accuracy. 

In order to distinguish the difference between actual testing 

and theoretical performance, this study expands the 

evaluation metrics, where AAPTdT denotes the actual 

average prospective time during testing, and ALPA1 and 

ALPA2 denote the prediction accuracy in the lateral and 

longitudinal directions, respectively. The comparison results 

are shown in Table 2. 
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 (13) 

 

In (13),   is the coordinates that the vehicle actually passes 

through, and in the sequence of actual coordinates,  and the 

predicted coordinate  have the closest straight-line distance. 

 is the number of predicted coordinates, and  is the 

number of predicted trajectories. It is also important to note 

that the values in Table 2 are derived from estimates and 

averages of multiple tests, and these values may change 

depending on the actual test conditions. 

 

Table 2    Simulation testing results 

I:L 7:6 6:6 5:6 4:6 Ave 
ATPT (s) ~8.6 ~7.8 ~6.1 ~4.3 ~6.7 

AAPTdT (s) ~7.5 ~6.9 ~5.8 ~3.7 ~5.9 

ALPA1(%) ~91.8 ~92.4 ~93.1 ~94.8 ~93.0 

ALPA2(%) ~92.3 ~92.1 ~94.7 ~93.7 ~93.2 

 

According to the statistical results in Table 2, the model 

works properly with different IORs, with an average accuracy 

of 93.1% and an actual average look-ahead time of 5.9s. 

Finally, in order to demonstrate the superiority of the 

proposed model in this study, a comparison of the 

mainstream sequence prediction methods is conducted, and 

the comparison results are shown in Table 3. Since the 

training data are the same, the ATPT of different prediction 

methods are the same, but their AAPTdT and ALPA have 

different results. In addition, in order to provide an intuitive 

comparison between different methods, the values in Table 3 

were calculated by average under different IORs. 

 

Table 3    Comparison of different mainstream sequence 

prediction methods 

I:L Ⅰ Ⅱ Ⅲ Ⅳ Proposed 
ATPT (s) ~6.7 ~6.7 ~6.7 ~6.7 ~6.7 

AAPTdT (s) ~3.2 ~3.4 ~3.9 ~4.1 ~5.9 

ALPA1(%) ~82.3 ~85.6% ~87.5 ~89.3 ~93.0 

ALPA2(%) ~83.7 ~84.3% ~86.7 ~89.9 ~93.2 

In Table 3, Ⅰ represents the ordinary RNN structure, Ⅱ and Ⅲ 

represent the 2-layer GRU and 2-layer LSTM, respectively, 

and Ⅳ represents the Encoder Decoder structure based on 

LSTM. Compared to the other four structures, the model 

proposed in this study has loner actual prospective time and 

higher prediction accuracy. 

In summary, the method proposed in this study achieves the 

expected results, and can be easily ported to highway 

scenarios with different coordinate systems, and has high 

prediction accuracy and prospective time, which can provide 

a certain research reference for autonomous driving trajectory 

prediction. 

5. CONCLUSION 

Trajectory prediction algorithms in autonomous vehicles 

plays a significant role in preventing vehicle collisions and 

improving traffic safety. However, some existing studies 

suffer from the problem of difficulty in portability and reuse. 

Based on the above motivation, we proposed a trajectory 

prediction model that is easily portable for collision 

avoidance to improve traffic safety. Specifically, this study 

first presented a novel data sampling algorithm that can 

reduce the dimensionality of high-dimensional data of 

different lengths to meet the model requirements. Second, a 

trajectory prediction neural network model based on vehicle 

displacement offset is developed according to the data 

characteristics, and the prediction model is trained by a 

stepwise reduction of the input data, which yields quite good 

theoretical training results. Finally, in order to test the actual 

performance of the model, the proposed model is embedded 

in a co-simulation environment with multiple software 

synchronization, and the experimental results show that the 

model can work properly without secondary training, and 

good prediction accuracy and prospective time was achieved. 

In summary, the model proposed in this study solves the 

problem that traditional models are difficult to be reused to a 

certain extent, which can provide some reference for 

autonomous driving research. 

Although this study has made some progress, it still has the 

shortcomings of having a small amount of training data and 

no real vehicle testing. Therefore, in the future research, we 

improve the model by the following two aspects. The first is 

to increase the training data and test scenarios to increase the 

credibility, and the second is to use real-vehicle tests to 

improve the usability. 
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