
A Multiple-Criteria Ensemble Weight Strategy to Increase the Effectiveness of Deep
Learning-based Fault Localization

Chih-Chiang Fang and Chin-Yu Huang*

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

neilfang112113@gmail.com, cyhuang@cs.nthu.edu.tw

*corresponding author

Abstract—Fault localization (FL) is an essential phase in

software debugging and is used to detect the possible faulty

location. Nowadays, deep learning technique has a great

advantage to extract semantic features of program and hidden

data information for coverage data effectively. Therefore,

deep learning-based FL is regarded as the latest solution.

However, it is well known that none of existing methods is

suitable to all scenarios including single fault and multiple

faults. Furthermore, the optimal hyperparameters of deep

learning model for FL are hard to be determined in different

types of programs. According to past researches,

Multicriteria decision-Making (MCDM) can provide the best

or trade-off solutions to multiple method combinations. In

this paper, we combined multiple-criteria ensemble weight

strategy with deep learning-based FL to improve the

effectiveness of program. Overall, our proposed method has

also a good scalability and run some experimental results to

obtain significant performance improvement comparisons

among the past methods.

Keywords—Fault Localization; Deep Learning;
Hyperparamters; Multicriteria Decision-Making; Software
Debugging

1. INTRODUCTION

Software debugging is very difficult task and how to find the

location of faulty statement is critical topic. That is called fault

localization (FL) problem[1][2][3]. Recently, there are many

fault localization methods to be proposed and classified them

into three most popular types: 1) Spectrum-Based Fault

Localization (SBFL) techniques, 2) Mutation-Based Fault

Localization (MBFL) techniques, and 3) Deep Learning-

Based Fault Localization [4][5] techniques that are used to

identify the faulty location accurately and effectively.

In general, faulty program can be classified into single fault

and multiple faults in real world. We also do not know how

many faults are in this program. According to some

investigations [1][5][6][7], most FLs are not suitable to

multiple faults directly and need to perform additional

operations such as running FL process for individual failed

test case and sufficient passed test cases combination together,

various distance matrix, clustering, iteration and so on.

Furthermore, none of existing methods is suitable to all cases.

Actually, each program has different characteristics from

different software developers and programming language

aspects. To effectively extract semantic feature of program,

selecting deep learning-based FL method is the best solution

among these methods. Based on the stated reasons, we must

design a novel approach to meet these requirements and can

reflect the results quickly. In this paper, we combined

multiple-criteria ensemble weight strategy with deep learning-

based FL to improve the effectiveness of program. On the

other hand, we analyzed the execution time of multiple-

criteria ensemble weight added into deep learning-based FL.

The preliminary experiment has shown that our proposed

method is effective and can improve the overall performance.

2. OUR PROPSED APPROACH

The detailed processing diagram of our proposed method is

illustrated in Figure 1.

Figure 1. Combining multiple criteria ensemble wight with deep learning-

based FL

Our proposed approach can be divided into the following steps:

Step 1. Collect the coverage data of program k using a given

number of test cases (fail or pass).

Step 2. The coverage datak can be regarded as training data to

deep learning-based FL. Also, the virtual test cases [4] are

regarded as testing data.

Step 3. It is noted that each statement i itself should be

different weight value and can be confirmed effectively in this

step. Here, we use multi-criteria decision-making concepts[8]

[9], ensemble classifier approach [10] and the lower

EXAM/AVG EXAM score to derive it. Furthermore, we

discuss four common cases that are Mean, MAX, MIN, and

ROC (Rank-Order Centroid) value respectively. Assume that

there are p methods (M1,M2,..Mp) to find the location of faulty

statement separately. Each method has its advantage and

disadvantage for the certain situation. Combining these

methods with deep learning-based FL is an alternative

solution to derive some possible confident weight values of

each statement that are defined as (1)-(4).

 , , = 1 + M (, , , , … , ,) (1)

 , , = 1 + MAX (, , , , … , ,) (2)

 , , = 1 + MIN (, , , , … , ,) (3)

585

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/23/$31.00 ©2023 IEEE
DOI 10.1109/DSA59317.2023.00082

 , , = 1 + ROC (, , , , … , ,) (4)

where , , is ensemble weight 1 that takes average value

of these methods for statement i in faulty program k, , ,
is ensemble weight 2 that takes maximum value of these

methods, , , is ensemble weight 3 that takes minimum of

these methods, , , is ensemble weight 4 that takes ROC

of these methods, and initial value of statement i is 1. If

statement i is only visited by some failed test cases or failed

test cases and passed test cases together, its weight value must

be re-adjusted. Conversely, it is not visited by any test cases

and keep original value. The maximum value of adjusted

weight is 2. Equation (4), we also have to know these

estimated method orders in advance. Select one of these

methods with the lowest EXAM/AVG EXAM score as M1,

the second lower score as M2 and so on. Then we use ROC to

derive the confident weight value of statement i.
Step 4. Select a suitable deep learning model to predict the

output value of each statement i in program k. In this case, the

first suspiciousness scores of faulty programs are generated by

selected deep learning model.

Step 5. The second suspiciousness score of statement i in

program k is the product of the output of selected deep

learning model and different ensemble weight vector j from

step 3. This step can re-order the rank of each statement to

locate possible faulty statements quickly. If the

hyperparameters of deep learning model cannot be found, the

predicted output may be worse. At the time, this step can

alleviate the hyperparameter effects. When this step is

completed, it is obvious that the highest suspiciousness score

is possible faulty statement.

3. EXPERIMENTAL EVALUATION

In this section, our experimental environments are listed

below: 1) AMD Ryzen 7 5000 series, 2) 16GB of RAM, 3)

NVIDIA GPU RTX 3060, and 4) two basic deep learning

models (DNN, CNN) are implemented by using TensorFlow

API 2.5 in python programming language. We selected two

published datasets that are Gzip and Grep from SIR.

3.1. Average Processing Time of Multiple Criteria

Ensemble Weight Analysis

While considering ensemble weight to deep learning-based

FL, analyzing its execution time distribution is necessary.

Table 1 shows the average execution time of each component

for ensemble weight approach. As can be seen that the average

processing time of multiple criteria ensemble weights was

close to 0.91s/1.4s for Gzip and Grep dataset.
Table 1. Average execution time for multiple criteria ensemble weight

Various weight
calculations
for effective
statements (ms)

lower EXAM score
calculation (5 methods)
find TOP 3 methods and orders
xa,yb (ms) (a:1 fault, b:4 faults)

The product
of weight
vector and
test predicted
output

Various wight
calculations
for all
statements
(ms)

Gzip 864.218 17.345,37.578 ignored 4389.491

Grep 1354.733 16.089,40.489 ignored 8852.6

3.2. Preliminary Result and Discussion

In this experiment, we compared the effectiveness of some

SBFLs, CNN,DNN and our proposed method for distinct

faulty versions of Gzip as illustrated Figure 2. As can be seen

that our multiple criteria ensemble weight is significant

improvement for the second suspiciousness score output. It is

proven that the hyperparameter problems of two basic deep

learning models can be alleviated and effectively find the

possible faulty statement.

Figure 2. The effectiveness comparison among different methods for Gzip

4. CONCLUSION

In this paper, we tried to combine multiple criteria ensemble

weight with deep learning-based FL to obtain the better

suspiciousness score of faulty statement. The preliminary

experiment has shown this approach is feasible. Furthermore,

the overhead of our proposed approach is relatively small and

effectively alleviate the hyperparameter problems. We are

planning to perform more diverse datasets to validate the

correctness and effectiveness. In the future, we will also

investigate the effects from different kinds of deep learning

models.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, "A Survey on
Software Fault Localization," IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707-740, 1 Aug. 2016

[2] W. E. Wong and V. Debroy, "Software Fault Localization,"
Encyclopedia of Software Engineering, vol. 1, pp. 1147-56, Sep. 2010

[3] W. E. Wong and T. H. Tse, "Handbook of Software Fault Localization:
Foundations and Advances," Edition 1, Wiley-IEEE Computer Society
Press, May 2023

[4] Z. Zhang,Y. Lei,X. Mao, and P. Li, "CNN-FL: An Effective Approach
for Localizing Faults using Convolutional Neural Networks,"
Proceedings of the 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp.445-
455, Hangzhou, China, 2019.

[5] A. Dutta, R. Manral, P. Mitra, and R. Mall, "Hierarchically Localizing
Software Faults Using DNN," IEEE Transactions on Reliability, Vol.
69, No. 4, pp. 1267-1292, Dec. 2020.

[6] Y. Li and P. Liu, "A Preliminary Investigation on the Performance of
SBFL Techniques and Distance Metrics in Parallel Fault Localization,"
IEEE Transactions on Reliability, vol. 71, no. 2, pp. 803-817, June
2022.

[7] M. Zhang, S. Wang and W. Qiu, "A Software Multi-fault Locating
Technique based on Space Shrinkage," 2022 9th International
Conference on Dependable Systems and Their Applications (DSA),
Wulumuqi, China, pp. 853-858 2022.

[8] N. Aribi, N. Lazaar, Y. Lebbah, S. Loudni and M. Maamar, "A
Multiple Fault Localization Approach Based on Multicriteria
Analytical Hierarchy Process," 2019 IEEE International Conference
On Artificial Intelligence Testing (AITest), Newark, CA, USA, pp. 1-8,
2019.

[9] M. Danielson, and L. Ekenberg. "Trade-Offs for Ordinal Ranking
Methods in Multi-criteria Decisions," GDN 2016. Lecture Notes in
Business Information Processing. Vol.274. pp.16-27, 2017.

[10] A. Dutta, "Poster: EBFL-An Ensemble Classifier based Fault
Localization," 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), Valencia, Spain, pp. 473-
476,2022.

586

