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Abstract—Fault localization (FL) is an essential phase in 

software debugging and is used to detect the possible faulty 

location. Nowadays, deep learning technique has a great 

advantage to extract semantic features of program and hidden 

data information for coverage data effectively. Therefore, 

deep learning-based FL is regarded as the latest solution. 

However, it is well known that none of existing methods is 

suitable to all scenarios including single fault and multiple 

faults. Furthermore, the optimal hyperparameters of deep 

learning model for FL are hard to be determined in different 

types of programs. According to past researches, 

Multicriteria decision-Making (MCDM) can provide the best 

or trade-off solutions to multiple method combinations. In 

this paper, we combined multiple-criteria ensemble weight 

strategy with deep learning-based FL to improve the 

effectiveness of program. Overall, our proposed method has 

also a good scalability and run some experimental results to 

obtain significant performance improvement comparisons 

among the past methods. 
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1. INTRODUCTION 

Software debugging is very difficult task and how to find the 

location of faulty statement is critical topic. That is called fault 

localization (FL) problem[1][2][3]. Recently, there are many 

fault localization methods to be proposed and classified them 

into three most popular types: 1) Spectrum-Based Fault 

Localization (SBFL) techniques, 2) Mutation-Based Fault 

Localization (MBFL) techniques, and 3) Deep Learning-

Based Fault Localization [4][5] techniques that are used to 

identify the faulty location accurately and effectively.  

In general, faulty program can be classified into single fault 

and multiple faults in real world. We also do not know how 

many faults are in this program. According to some 

investigations [1][5][6][7], most FLs are not suitable to 

multiple faults directly and need to perform additional 

operations such as running FL process for individual failed 

test case and sufficient passed test cases combination together, 

various distance matrix, clustering, iteration and so on. 

Furthermore, none of existing methods is suitable to all cases. 

Actually, each program has different characteristics from 

different software developers and programming language 

aspects. To effectively extract semantic feature of program, 

selecting deep learning-based FL method is the best solution 

among these methods. Based on the stated reasons, we must 

design a novel approach to meet these requirements and can 

reflect the results quickly. In this paper, we combined 

multiple-criteria ensemble weight strategy with deep learning-

based FL to improve the effectiveness of program. On the 

other hand, we analyzed the execution time of multiple-

criteria ensemble weight added into deep learning-based FL. 

The preliminary experiment has shown that our proposed 

method is effective and can improve the overall performance. 

2. OUR PROPSED APPROACH 

The detailed processing diagram of our proposed method is 

illustrated in Figure 1. 

 
Figure 1. Combining multiple criteria ensemble wight with deep learning-

based FL 

Our proposed approach can be divided into the following steps: 

Step 1. Collect the coverage data of program k using a given 

number of test cases (fail or pass). 

Step 2. The coverage datak can be regarded as training data to 

deep learning-based FL. Also, the virtual test cases [4] are 

regarded as testing data. 

Step 3. It is noted that each statement i itself should be 

different weight value and can be confirmed effectively in this 

step. Here, we use multi-criteria decision-making concepts[8] 

[9], ensemble classifier approach [10] and the lower 

EXAM/AVG EXAM score to derive it. Furthermore, we 

discuss four common cases that are Mean, MAX, MIN, and 

ROC (Rank-Order Centroid) value respectively. Assume that 

there are p methods (M1,M2,..Mp) to find the location of faulty 

statement separately. Each method has its advantage and 

disadvantage for the certain situation. Combining these 

methods with deep learning-based FL is an alternative 

solution to derive some possible confident weight values of 

each statement that are defined as (1)-(4).  

 , , =   1 + M  ( , , , , … , , ) (1)

 , ,  =    1 + MAX ( , , , , … , , )   (2) 

 , ,  =    1 +  MIN  ( , , , , … , , )  (3) 
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 , ,  =     1 + ROC ( , , , , … , , )   (4) 

where  , ,  is ensemble weight 1 that takes average value 

of these methods for statement i in faulty program k,  , ,  
is ensemble weight 2 that takes maximum value of these 

methods,  , ,  is ensemble weight 3 that takes minimum of 

these methods,   , ,  is ensemble weight 4 that takes ROC 

of these methods, and initial value of statement i is 1. If 

statement i is only visited by some failed test cases or failed 

test cases and passed test cases together, its weight value must 

be re-adjusted. Conversely, it is not visited by any test cases 

and keep original value. The maximum value of adjusted 

weight is 2. Equation (4), we also have to know these 

estimated method orders in advance. Select one of these 

methods with the lowest EXAM/AVG EXAM score as M1, 

the second lower score as M2 and so on. Then we use ROC to 

derive the confident weight value of statement i. 
Step 4. Select a suitable deep learning model to predict the 

output value of each statement i in program k. In this case, the 

first suspiciousness scores of faulty programs are generated by 

selected deep learning model. 

Step 5. The second suspiciousness score of statement i in 

program k is the product of the output of selected deep 

learning model and different ensemble weight vector j from 

step 3.  This step can re-order the rank of each statement to 

locate possible faulty statements quickly. If the 

hyperparameters of deep learning model cannot be found, the 

predicted output may be worse. At the time, this step can 

alleviate the hyperparameter effects. When this step is 

completed, it is obvious that the highest suspiciousness score 

is possible faulty statement. 

3. EXPERIMENTAL EVALUATION 

In this section, our experimental environments are listed 

below: 1) AMD Ryzen 7 5000 series, 2) 16GB of RAM, 3) 

NVIDIA GPU RTX 3060, and 4) two basic deep learning 

models (DNN, CNN) are implemented by using TensorFlow 

API 2.5 in python programming language. We selected two 

published datasets that are Gzip and Grep from SIR.  

3.1. Average Processing Time of Multiple Criteria 

Ensemble Weight Analysis 

While considering ensemble weight to deep learning-based 

FL, analyzing its execution time distribution is necessary. 

Table 1 shows the average execution time of each component 

for ensemble weight approach. As can be seen that the average 

processing time of multiple criteria ensemble weights was 

close to 0.91s/1.4s for Gzip and Grep dataset.  
Table 1.  Average execution time for multiple criteria ensemble weight 

 

Various weight 
calculations 
for effective 
statements (ms) 

lower EXAM score  
calculation (5 methods) 
find TOP 3 methods and orders 
xa,yb (ms) (a:1 fault, b:4 faults) 

The product 
of weight 
vector and 
test predicted 
output  

Various wight 
calculations 
for all 
statements 
(ms) 

Gzip 864.218 17.345,37.578 ignored 4389.491 

Grep 1354.733 16.089,40.489 ignored 8852.6 

3.2. Preliminary Result and Discussion 

In this experiment, we compared the effectiveness of some 

SBFLs, CNN,DNN and our proposed method for distinct 

faulty versions of Gzip as illustrated Figure 2. As can be seen 

that our multiple criteria ensemble weight is significant 

improvement for the second suspiciousness score output. It is 

proven that the hyperparameter problems of two basic deep 

learning models can be alleviated and effectively find the 

possible faulty statement. 

 
Figure 2. The effectiveness comparison among different methods for Gzip 

4. CONCLUSION 

In this paper, we tried to combine multiple criteria ensemble 

weight with deep learning-based FL to obtain the better 

suspiciousness score of faulty statement. The preliminary 

experiment has shown this approach is feasible. Furthermore, 

the overhead of our proposed approach is relatively small and 

effectively alleviate the hyperparameter problems.  We are 

planning to perform more diverse datasets to validate the 

correctness and effectiveness. In the future, we will also 

investigate the effects from different kinds of deep learning 

models.  
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