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Abstract—Most modern processors utilize Dynamic Voltage

and Frequency Scaling (DVFS) technology to dynamically

adjust voltage and frequency according to the workloads of

processors to reduce power consumption. However, DVFS

can be exploited by attackers to introduce transient hardware

faults. Combined with Differential Fault Analysis (DFA), the

secure execution environment of processors is threatened.

In order to minimize the threat of DVFS fault attack, we

analyze its principle and focus on countermeasures for AES

applications. We provide a detailed analysis of three software

countermeasures, namely redundancy-based methods, parity

code, and infective computation. Among them, the temporal

redundant method with random latency between executions

defends against high-order attacks with 34.18% timing over-

head, while the infective computation-based method achieves

the best security with nearly 124.35% timing overhead.

Keywords–DVFS, Fault Injection Attack, Countermeasure

1. INTRODUCTION

Nowadays, with the sharp increase in processor frequency

and complexity, coupled with multi-core technology, pro-

cessor power consumption is becoming a major problem.

To both reduce CPU power consumption at low workloads

and meet the high-frequency requirements at high workloads,

dynamic voltage and frequency scaling (DVFS) is utilized.

It dynamically adjusts the voltage and frequency according

to the workload of the processor, thus achieving the purpose

of reducing power consumption. It is available on ARM,

Intel, and AMD CPUs, and can be controlled from privileged

software to provide more flexible adjustments on voltage and

frequency. However, malicious adjustment can lead to broken

timing constraints on the CPU. This can cause silent data

corruption (SDC) and finally lead to a system crash, posing a

threat to security domains on the CPU.

Tang et al. proposed the first DVFS-based fault attack,

CLKSCREW attack [1] in 2017, which is fully controlled

by software without any hardware assistance. This attack

introduces a fault by overclocking through the system soft-

ware to exceed the legitimate upper bound. Combined with

differential fault analysis (DFA), they successfully obtained the

AES cryptographic key from ARM TrustZone and escalate a

malicious kernel driver’s privileges by loading self-signed code

into TrustZone. However, overclocking may cause damage to

the processor and some Intel and AMD processors restrict the

administrator to set the processor frequency only within the

legal range for safety reasons. Thus, CLKSCREW can not

pose a threat to those overclocking-restricted processors.

To overcome the drawbacks of overclocking, many researchers

have devoted themselves to the study of undervolting. Qiu

et al. proposed the first undervolting-based DVFS attack,

VoltJockey attack [2] and successfully obtained the AES

cryptographic key from ARM TrustZone and loaded untrusted

applications into TrustZone by invalidating the RSA ver-

ification. They then demonstrated the effectiveness of the

VoltJockey attack on Intel SGX [3] by obtaining the AES

cryptographic key from the enclave and leading RSA to give

any expected outputs. Concurrently, Murdock et al. and Kenjar

et al. present similar attacks, Plundervolt [4] and V0ltpwn [5],

respectively. Despite the difference in attacking targets and

experimental environments, they do share a single principle,

software-undervolting by writing specific values into voltage-

related MSR. In response to the vulnerability revealed Intel

issued a CVE (CVE-2019-11157) [6] and modified the SGX

remote attestation process to verify that overclocking mail-

box (OCM) and its model-specific registers (MSRs) allowing

software-undervolting are disabled via a microcode update.

Differ from those software-controlled attacks mentioned be-

fore, VoltPillager [7] bypasses the CPU and OCM, and directly

sends commands over the bus, thus bypassing the mitigation

provided by Intel.

Therefore, simply disabling the voltage-related MSRs can

not completely eliminate the vulnerability induced by DVFS.

In addition, as undervolting can decrease dynamic power

consumption, disabling it leads to higher power consumption

on the CPU. In this paper, we focus on the AES encryption

procedure and implement several software countermeasures to

defend it against DVFS fault attacks. We then analyze their

security and performance overheads. Compared to hardware

countermeasures, software countermeasures can be imple-

mented easily and inexpensively. Software countermeasures

only add a certain amount of temporal and spatial overheads

when the user’s applications are running and do not require

any hardware updates. Furthermore, software countermeasures

can be easily deployed on devices of different platforms and

are more versatile than hardware countermeasures.

The contributions of this work are:

• We detailedly discuss the principle of the DVFS fault attack

and its security implications.

• We summarize different kinds of existing countermeasures

and implement them and analyze their securities and per-

formance overheads.

The rest of this paper is organized as follows. Section 2
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introduces the basic backgrounds of DVFS, AES, DFA, and

the typical attack procedure of DVFS fault attacks. Section

3 describes the countermeasures implemented in this paper.

Section 4 evaluates the performance overhead and security.

Section 5 shows relevant works on software countermeasures

against fault attacks. Section 6 concludes the article.

2. PRELIMINARIES

In this section, we provide backgrounds about Dynamic Volt-

age and Frequency Scaling (DVFS), Advanced Encryption

Standard (AES), Differential Fault Analysis (DFA), and the

typical attack procedure of DVFS fault attacks.

2.1. DVFS

DVFS, also known as Dynamic Voltage and Frequency Scal-

ing, is a commonly used method to reduce energy consumption

by dynamically adjusting the device’s voltage and frequency.

It is widely used in various computing devices such as em-

bedded devices, personal computers, and servers. Most digital

circuits, especially processors, use CMOS integrated circuits,

whose power consumption can be divided into static power

consumption and dynamic power consumption [8]. Dynamic

power consumption is proportional to the square of the clock

frequency(f) and voltage(V) of the device, as shown in (1).

Pdynamic ∝ CfV 2 (1)

where C means load capacitance of the integrated circuit.

DVFS reduces the dynamic power consumption of a circuit by

dynamically reducing the frequency and voltage of the device

when workloads are low, thereby reducing the overall power

consumption of the circuit.

On the other hand, as a single dynamic scaling strategy

may not meet the needs of diverse workloads, OS provides

DVFS Drivers for administrators to manually select a governor

from all governors that are supported. For example, kernel

module CPUfreq acts as DVFS driver in Linux by default,

and it provides six governors: (1) performance, (2) powersave,

(3) userspace, (4) schedutil, (5) ondemand, (6) conservative.

Among all six governors, the userspace governor provides the

ability to manually set frequencies of CPU cores.

Although DVFS brings considerable energy saving, dynamic

voltage, and frequency may threaten processor security. A

processor must meet timing constraints to run error-freely,

which are shown in Figure 1. To ensure that the signal can be

propagated to the destination flip-flop within one clock cycle,

the following inequation must be satisfied:

Tclk ≥ TFF + Tmax path + Tsetup (2)

where Tclk is the time between two clock positive edges, TFF

is the latency of flip-flop, Tmax path is the propagating latency

of the critical path, and Tsetup is the amount of time required

for the input to a flip-flop to be stable before a clock edge. TFF

and Tsetup remain the same when frequency and/or voltage

changes, Tmax path and Tclk, however, vary with the variations

of frequency and voltage. Timing constraints can be broken

when voltage is decreased by malicious attackers, resulting
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Figure 1. Timing constraint for error-free data propagation

from input Qsrc to output Ddst for entire circuit

in an increment in Tmax path; or frequency is increased by

overclocking, resulting in a decrement in Tclk. In consequence,

the signal can not be propagated to the destination flip-flop

within one clock cycle, causing a bit-flip in the destination

flip-flop. It can cause silent data corruption and finally lead to

information leakage or system crash.

2.2. AES

Advanced Encryption Standard [9] is a typical symmetric key

block cipher, which divides the plaintext into several groups

of fixed size (128 bits). It encrypts and decrypts each group

individually, and uses the same key for the encryption and

decryption processes. AES organizes every 128-bit packet into

a 4×4 bytes matrix, called the state (S), and transforms it

several times to obtain the encrypted/decrypted data. The state

can be denoted as follows:

S =

⎛
⎜⎜⎝
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⎞
⎟⎟⎠ (3)

The number of transformation rounds is determined by the

AES key length, which can be 128 bits, 192 bits, and 256 bits,

corresponding to 10, 12, and 14 rounds of transformations, re-

spectively. Each round of transformations uses a corresponding

round key, which is obtained by a key schedule process. In

each round, the transformation process consists of four trans-

formations: (1) SubBytes, (2) ShiftRows, (3) MixColumns,

and (4) AddRoundKey. In particular, the AES128 encryption

procedure performs an AddRoundKey transformation before

the start of the first encryption round, as well as no column

mixing during the 10th round of encryption. We detail four

transformations of each round as follows:

576



• SubBytes — Each byte undergoes a nonlinear substitution.

It is implemented by replacing each byte ai,j of the state

with the byte S-box(ai,j) in the corresponding position of

the S-box (Substitution-box) for simplicity. The S-box is

precomputed and stored in a 256×8 bits lookup table.

• ShiftRows — The bytes of the first, second, third, and

fourth rows of the state are left-shifted by 0, 1, 2, and 3

bytes, respectively.

• MixColumns — The four bytes in each column are mixed

together in a specific way to generate a new column. It can

be decribed as follows:⎛
⎜⎜⎝
b0,j
b1,j
b2,j
b3,j

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α β 1 1
1 α β 1
1 1 α β
β 1 1 α

⎞
⎟⎟⎠×

⎛
⎜⎜⎝
a0,j
a1,j
a2,j
a3,j

⎞
⎟⎟⎠ (4)

where bi,j is the byte in the ith row and the jth column of

the new state obtained after the transformation, α = 02 = x
and β = 03 = x + 1. It should be mentioned that the

multiply and add operations in (4) are modulo 2 multiply

and bitwise xor respectively and the α and β perform

modulo the irreducible polynomial of AES128 which is

g(x) = x8 + x4 + x3 + x+ 1.

• AddRoundKey — The round key, which is generated by

using a key schedule process, is added through bitwise xor

to the state.

2.3. DFA

In 1997, Boneh et al. [10] proposed a new attack on RSA,

which utilizes the error outputs to steal the secret. Biham et

al. [11] extended this attack to other encryption algorithms,

and named it Differential Fault Analysis (DFA). It collects

error outputs and correct outputs and analyzes them, extracting

useful information about the secret, which can be used to

reduce the possible key hypotheses. Since AES was proposed,

the research on DFA for AES had begun, and many effective

attacks were proposed[12][13][14].

Tunstall et al. [14] proposed one of the most effective DFA

attacks for AES, using only one pair of fault cipher and

correct cipher to reduce the possible key hypotheses to a mere

28. According to the characteristics of the AES encryption

procedure, if an attacker injects a fault into the state after the

(n − 3)th MixColumns (where n is the number of rounds

of the AES encryption procedure) and before the (n − 2)th
SubBytes, the error will propagate to the entire 4 × 4 state

during the (n− 1)th MixColumns. The resulting fault cipher,

which contains information about round keys, is analyzed with

the correct cipher and reduces the possible key hypotheses to

a much smaller set. If another fault cipher is produced, the

possible key hypotheses can be further shrunk and the secret

can be extracted with high possibility.

2.4. Typical Attack procedure

As overclocking/undervolting can easily induce faults into

CPU cores, it can be used to collect the fault ciphers for

DFA. The typical attack procedure of a DVFS fault attack

on AES128 is shown as follows:

1) Running the victim (i.e. AES128 encryption procedure) on

one CPU core and waiting until AES128 finishes its 7th

MixColumns.

2) Undervolting or overclocking by MSRs or drivers, which

may cause a fault in the state after the 7th MixColumns

and before the 8th SubBytes.

3) Get a fault output cipher and analyze it with the correct

cipher by DFA. Update the possible key hypotheses S
according to the results. If S has more than one candidate

key, go to 1); else, terminate, as the very single candidate

key must be the secret key used by AES128.

According to the capabilities of injecting faults, the attacks can

be divided into two categories: one-order attacks and high-

order attacks. If an attack can induce a single fault at an

arbitrary position during one encryption, we call it a one-order

attack. Instead, if an attack can induce more than one fault at

arbitrary positions during one encryption, it is called a high-

order attack.

This kind of attack is fully software-controlled and can be

conducted remotely. An attacker can easily launch a high-order

attack by simply undervolting twice and precisely control

the fault positions to bypass many redundancy-based counter-

measures. Thus, effective countermeasures against the attack

should be summarized and evaluated to meet different security

and performance demands.

3. SOFTWARE COUNTERMEASURES

In this section, we describe the basic principles underlying the

software countermeasures against fault attacks: fault detection

and infective computation, and give details about our imple-

mented ones. In this section, we only focus on the encryption

process of AES128 as there are minor differences between the

encryption and decryption processes. The decryption process

just performs inverse transformations to revert the change in

the states.

3.1. Fault Detection

Fault detection can be implemented by redundancy and error-

detecting codes. This kind of method has a verification stage

where original information and redundant one are compared

to each other. A cipher will be produced only when the two

match. No information about fault cipher should be produced

when the verification stage fails.

3.1.1. Redundancy-based Methods: Redundancy-based

methods can be divided into algorithm-level, round-level,

and operation-level. As they share the same principle —

duplicating, we only implement algorithm-level redundancy

for the sake of brevity. Redundancy-based methods duplicate

the encryption process (using either temporal or spatial

redundancy) and compare the two results and output results

only when they match. These methods can be divided into

two categories: temporal and spatial redundancy.

• Temporal redundancy runs the encryption process twice

serially and output ciphers when two results match. It

provides the fault-detecting ability at a cost of almost

doubled execution time theoretically. A simple extension is
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running the encryption process three times and we can easily

correct one error by simply choosing the major outputs,

undertaking an even larger performance overhead. However,

they are vulnerable to high-order attacks, which are capable

to induce the same faults at the same position of different

encryption processes.

• Spatial redundancy, on the other hand, runs two encryption

processes on different CPU cores in parallel and output

ciphers when two results match. It provides the fault-

detecting ability at a cost of almost doubling hardware

resources. However, as multi-thread require an extra multi-

thread library, it asks for a lot of memory spaces and has

a great impact on performance because thread creating is a

time-consuming procedure as we will show in Section 4.

3.1.2. Error-detecting Code: Differing from entirely du-

plicating the whole encryption process, the error-detecting

code attaches less amount of redundant information to the

input plaintext. During the encryption process, the redundant

information transforms accordingly and finally obtains a bunch

of check words. They will be compared to those calculated

by the result of the encryption process and an output will be

produced only when they match. Due to the complexity of the

AES encryption process, transforms of error-detecting codes

during the encryption process can be hard to implement and

consume a lot of time and/or memory space. Bertoni et al.

proposed an effective method that is based on parity code

[15] and implemented it on hardware. Its basic idea is to

attach one parity bit for each byte of the state of the AES

encryption process, obtaining a 4×4 bits parity matrix. The

parity matrix transforms along with transformations of the

state, called parity predictions. We detail four transformations

of the parity matrix on even parity in each round as follows:

• During SubBytes, every byte of the state is split into upper

four bits and lower four bits and used as row index and

column index of S-Box respectively. Therefore, we can

precompute parity bits for every byte in S-Box and store

them in memory. When the original byte of the state is

substituted with the byte indexed, the parity bit is substituted

accordingly.

• During ShiftRows, rows of the state are shifted progres-

sively. Thus, we just need to shift rows of the parity matrix

accordingly.

• During MixColumns, columns of the state are mixed to-

gether as shown in (4). Transformations of the parity matrix

are shown as follows:⎛
⎜⎜⎝
p0,j
p1,j
p2,j
p3,j

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

⎞
⎟⎟⎠×

⎛
⎜⎜⎝
p0,j
p1,j
p2,j
p3,j

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞
⎟⎟⎠×

⎛
⎜⎜⎜⎝

a
(7)
0,j

a
(7)
1,j

a
(7)
2,j

a
(7)
3,j

⎞
⎟⎟⎟⎠ (5)

where pi,j is the parity bit associated with state byte ai,j ,

and a
(7)
i,j is the most significant bit of ai,j . We give a brief

proof of the formula of p0,j , the remainings can be proven

similarly and we omit them for the sake of brevity.

Proof. As shown in (4), b0,j can be obtained by the

following formula. It should be mentioned that + and ×
are bitwise xor and modulo 2 multiple, respectively.

b0,j = α× a0,j + β × a1,j + a2,j + a3,j (6)

Define par(a) as the parity of integer a, p0,c can be

calculated as follows:

p0,j = par(α× a0,j + β × a1,j + a2,j + a3,j)

= par(α× a0,j) + par(β × a1,j)

+p2,j + p3,j (7)

As α × a0,j = a0,j << 1, β × a1,j = (a1,j << 1) + a1,j ,

the following formula holds:

par(α× a0,j) = p0,j + a
(7)
0,j (8)

par(β × a1,j) = a
(7)
1,j (9)

Bring them all together, p0,j �→ p0,j+p2,j+p3,j+a
(7)
0,j+a

(7)
1,j

holds.

• During AddRoundKey, the round key is added through

bitwise xor to the state. Consider two integers a and b whose

numbers of bit 1 are x and y respectively and the number

of bit 1 in both a and b is t. Then, the number of bit 1 in

a⊕ b can be calculated as p = x+ y− t× 2. Therefore, the

parity of a ⊕ b equals that of x + y, which can be simply

calculated by adding the parities of a and b together through

bitwise xor. So, we can simply add the parities of bytes in

the round key through bitwise xor to the parity matrix.

During each transformation, the state is modified, and the

parity matrix is predicted accordingly. Therefore, verification

can be inserted after every transformation, every encryption

round, or the whole encryption process, leading to degressive

overheads, yet degressive capacities for locating the faults

injected. We implemented this parity-code-based method in

the software version and analyze its performance overhead

and security in Section 4.

3.2. Infective Computation

Fault detection schemes have an intrinsic drawback — a

verification stage is requisite before output ciphers, which can

be injected and bypassed. To prevent an adversary from using

high-order attacks to bypass the verification stage, Yen et al.

[16] first introduced the principle of infective computation to

protect RSA against fault attacks. The basic idea of infective

computation is not detection, but infection — if a fault is

injected in the encryption process, the output cipher will be

polluted, so that even if the attacker gets the erroneous cipher,

he/she can’t utilize it to steal secrets. There are two ways to

realize infective computation:

• Use secret error to infect input and remove the effect of

previously introduced error before the program outputs.
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• Additional operations are introduced, which will not affect

the program output if no fault is injected, on the contrary,

the output will be infected if a fault injection occurs.

Tupsamudre et al. [17] proposed a countermeasure based on

additional operations. It duplicates AES encryption rounds

and randomly inserts dummy rounds between them, namely

redundant rounds and dummy rounds, which play roles as

additional operations. The dummy rounds always take a fixed

state as input and output the same state called β. Moreover,

the randomness of dummy rounds from a time perspective

disrupts the consecutive execution of redundant rounds and

cipher rounds, which effectively protect AES from high-order

attacks, as the attacker can not easily induce two faults at the

very same position of the states in two rounds. Details of this

countermeasure are described in Algorithm 1.

Algorithm 1 Tupsamudre et al.’s countermeasures for AES128

Input: P, kj for j ∈ {1, · · · , n}, (β, k0), (n = 11)
Output: BlockCipher(P,K)

1: R0 ← P,R1 ← P,R2 ← β
2: i ← 1, q ← 1
3: rstr ← {0, 1}t //#1(rstr) = 2n,#0(rstr) = t− 2n
4: while q ≤ t do
5: λ ← rstr[q]
6: κ ← (i ∧ λ)⊕ 2(¬λ)
7: ζ ← λ · �i/2�
8: Rκ ← RoundFunction(Rκ, k

ζ)
9: γ ← λ(¬(i ∧ 1)) ·BLFN(R0 ⊕R1)

10: δ ← (¬λ) ·BLFN(R2 ⊕ β)
11: R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
12: i ← i+ 1, q ← q + 1

13: return R0

where λ indicates whether the current round is a ci-

pher/redundant round; κ indicates which state should the

current round use; ζ indicates the round key used in the

current round; γ and δ indicate whether there are any faults

occur in the current cipher/redundant and dummy round,

respectively; BLFN maps all non-zero input to 1 and only

returns 0 when input is 0. The algorithm has a total of t
rounds, consisting of n cipher rounds, n redundant rounds,

and t − 2n dummy rounds. The timing of dummy rounds

is randomly set at the beginning of the algorithm, and the

intermediate results of these rounds are stored in R0, R1,

and R2, respectively. Before cipher rounds are executed, the

corresponding redundant rounds will be executed. Then the

two results will be bitwise xored together. If the xor result is

not 0, γ will be set to 1, indicating there are faults injected in

cipher rounds or redundant rounds. When faults are injected

in dummy rounds, R2 will be changed and not the same

with β. Faults injected in either cipher/redundant rounds or

dummy rounds will lead to an infection on R0, eventually

making the faults unexploitable. As the input and output of

the dummy round remain the same and R2 is initialized with

β, the following equation holds:

RoundFunction(β, k0) = β (10)

For every randomly generated β, k0 can be easily calculated by

running an AES encryption round with β as its input plaintext.

Let SM be the state after MixColumns, according to (10),

SM ⊕ k0 = β holds. Thus, k0 can be simply calculated by

k0 = β ⊕ SM . In this way, β can be set randomly and k0 is

calculated accordingly.

4. EVALUATION

In this section, we analyze the security of the three counter-

measures implemented and compare their performance over-

heads from both temporal and spatial perspectives.

4.1. Security Analysis

Redundancy-based methods hypothesize that the injected

faults are transient and will not inject the same faults exactly

at the same time in two executions. Therefore, they are

vulnerable to high-order fault attacks capable of injecting the

same faults during two executions. An effective way to prevent

this from happening is adding random latency between two

executions.

The parity-based method fails when the number of bits flipped

in each byte of the state matrix is even. According to Kar-

povsky’s analysis [18], the number of undetectable errors is

2k for (n,k)-linear code, indicating coverage of 1 − 2−(n−k).

For the parity-based method which attaches a parity bit for

every byte of the state, the coverage is 1−2−16 ≈ 99.99847%,

which is close to the simulation result in [15]. Therefore, this

method can protect AES against one-order attacks with an

acceptable probability. When it comes to high-order attacks,

it also fails when an attacker injects an odd-bit error at both

state transformations and parity predictions. To make it even

worse, if an attacker can induce fault into the status register

and bypass the verification stage, this method will fail as the

verification becomes invalid. The same conclusion holds for

redundancy-based methods. Fortunately, we can check parity

after every prediction, making it impracticable to bypass all

verifications.

The infective computation-based method implemented in this

paper shares similarities with the temporal redundancy-based

method. It infects the cipher when a fault is injected in addi-

tional operations and disrupts two executions using random

dummy rounds. Therefore, it can protect AES from high-

order attacks. Moreover, because there is no verification stage

in this method based on infective computation, it is immune

to verification-bypass attacks. Therefore, this scheme outper-

forms the other schemes from the perspective of security.

4.2. Overhead

Experimental Setup: The experiment device has an Intel Core

i5-9400F processor, 16-GB memory; the OS is Ubuntu 20.04

LTS whose kernel version is 5.13.0–30. The processor has 6

physical cores and 6 logic cores whose frequency can be up

to 4.1 GHz.
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Figure 2. Normalized temporal overheads of the implemented

countermeasures. The boundaries of the whiskers are based on

the 1.5 times IQR value as popularly elected. We dismiss the

outliers for aesthetics.

4.2.1. Temporal Overhead: Temporal overhead is one of the

most important parts of performance overhead. Temporal

overheads of all implemented methods in this paper are shown

in a box and whiskers plot1 in Figure 2. The method based on

infective computation carries out 10 rounds of cipher rounds,

10 rounds of redundant rounds, and 6 rounds of dummy

rounds. We evaluate every countermeasure 300 times and

average the results.

Due to the good locality, the temporal redundancy-based

method incurs 34.18% temporal overhead, rather than 100%,

as many data and instructions are already stored in caches

during the second encryption. Contrary to popular belief, the

spatial redundancy-based scheme incurs more than 5100%

temporal overhead, leading to severe performance degradation.

After in-depth analysis, it is found that the time consumed in

creating a thread and waiting for the termination of the thread

just created is about 22 and 28 times more than the AES

encryption procedure, respectively.

According to the different timing for verification, the parity

code-based method incurs 93.06%, 77.08%, and 61.42% tem-

poral overhead, respectively, far more than that of the temporal

redundancy-based method. It seems to be contradictory to the

opinion that error-detecting codes usually require a smaller

overhead compared to straightforward duplication as they only

attach a smaller amount of redundant information. This is

because error-detecting codes are more suitable for hardware

implementation. When implemented in hardware, it is easy

to implement predictions of various error-detecting codes in

1A box-and-whiskers plot emphasizes the important metrics of a dataset’s
distribution. The box is drawn from the first quartile to the third quartile with
a horizontal line drawn in the middle to denote the median. The interquartile
range (IQR) is the distance between the first and third quartiles (i.e., box size).
The whiskers end at an observed data point, but can be defined in various
ways.

Table 1. Spatial overheads of implemented countermeasures
Countermeasures code size data structure(bit)

Redundancy
Temporal +12.04% +128

Spatial +12.90% +3584

Parity Code +79.96% +448

Infective Computation +65.34% +400

parallel, saving a lot of time used to predict serially in the

software implementation.

The infective computation-based method implemented in this

paper incurs a temporal overhead of 124.55%. Considering

it carries out 26 rounds in all, these methods are very

cost-ineffective compared to the temporal redundancy-based

method which carries out 20 rounds and only incurs 34.18%

temporal overhead. To defend against verification-bypass at-

tacks, infective computation removes all vulnerable condition

jump instructions, replacing them with several computations

that will be executed in every single round, whether faults are

injected or not, even if some computations (e.g. calculating

δ in cipher and redundant rounds) are pre-determinately not

necessary in the current round. They offer higher security at

an acceptable cost for safety-critical systems and applications.

4.2.2. Spatial Overhead: The temporal-redundancy-based

method executes the same encryption process several times

and only needs a copy of input plaintext, yielding extra 128

bits for AES128. The code segment size of the executable is

2085 bytes, which is only 12.04% larger than that of non-

protect AES128 (1861 bytes). The spatial-redundancy-based

method requires two CPU cores to run the encryption process

at the same time, thus the size of data structures used by

another instance is 256 × 8 + 11 × 16 × 8 + 128 = 3584
bits. The code segment size of the executable is 2101 bytes,

yielding an increment of 12.90%. However, multi-threads need

extra dynamic link library support and extra system structures

used in another thread, thus consuming far more space than

twice the original.

The extra space cost of the method based on parity code

mainly focuses on the storage of the parity matrix and the

increment of code size. It is necessary to store the parity matrix

of the state matrix, the round key, and the S-box, yielding a

total of 16+11×16+256 = 448 bits of extra space. The code

segment size of this method is 3349 bytes, which is increased

by 79.96% compared with non-protect AES128.

The extra space cost of the method based on infective compu-

tation implemented in this paper mainly focuses on the input

plaintext copies for redundant rounds and dummy rounds,

the random state used by dummy rounds, a map used for

accelerating the calculation of BLFN , and the increment of

code size. Extra data structures used are 128× 3 + 16 = 400
bits in total. The code segment size of this method is 3077

bytes, which is 65.34% larger than non-protect AES128.

The spatial overheads of all implemented countermeasures are

summarized in Table 1. Note that the data structure column

in the table only considers the structures used in the AES

procedure.
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5. RELATED WORKS

5.1. Error-dectecting Codes

Karri et al. proposed a parity-based countermeasure for

substitution-permutation network (SPN) symmetric block ci-

phers [19]. The basic idea compares a carefully modified parity

of the input plaintext with that of the output cipher. Despite

the low overhead on performance and hardware resources, it

fails when there are even-numbered bits flipped among the

128 bits input. Karpovsky et al. proposed a countermeasure

based on checksum [20]. It divides the verification stage

into two steps and verifies AES’s linear and non-linear parts

respectively. It can fairly detect multi-fault errors at a cost of

35% area overhead, yet a weak detecting ability of single-fault

errors. They subsequently proposed a countermeasure based on

a systematic nonlinear robust (n, k)-code [18], reducing the

fraction of undetectable errors from 2−r to 2−2r as compared

to the corresponding (n, k)−linear code (where n − k = r
and k >= r) at the cost of 50% area overhead. However, due

to the complexity of the nonlinear code, it is rather hard to

implement it in software and can incur a dramatic performance

overhead.

5.2. Infective Computation

Infection countermeasures based on deterministic diffusion

functions were proposed in [21][22] which strongly modify

the resulting diffusion pattern if there was a fault injected,

therefore preventing the exploitation of a faulty cipher. They

are vulnerable to the differential fault attacks proposed in

[23][24]. Lomné et al. introduced randomness and proposed

an enhanced countermeasure using multiplicative masks [25]

to protect against the aforementioned attacks. Similarly, Gier-

lichs et al. proposed an infection countermeasure based on

additional operations and first introduced dummy rounds to

randomly shuffle the redundant and cipher rounds [26]. How-

ever, Battistello et al. showed that both two countermeasures

were flawed and the full AES cryptographic key can be re-

trieved with 2200 and 36 faults, respectively, on average [27].

Tupsamudre et al. [17] improved Gierlichs’ countermeasure

using independent randoms irrespective of the round in which

the fault is injected. This countermeasure outperforms all

aforementioned countermeasures from the security perspective

and is implemented in this paper.

6. CONCLUSION

In this paper, we analyze the principle of DVFS fault attacks

and implement several software countermeasures for AES

based on redundancy, parity code, and infection calculation.

We then analyze the security and performance overhead of

the implemented countermeasures. The temporal redundancy-

based scheme achieves good security and low-performance

overhead while retaining simplicity to implement, yet remains

vulnerable to verification-bypass attacks. Contrary to popular

belief, the spatial redundancy-based scheme incurs a large

overhead on memory space and causes severe performance

degradation. The parity-based method is vulnerable to even-

numbered bit-flips and occurs quite a few performance over-

heads compared to the temporal redundancy-based scheme.

The infective computation-based scheme achieves the best

security and is immune to verification-bypass attacks, at a cost

of much higher performance overhead though.
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