
A Stacking-Based Heart Disease Classification Prediction Model 
 

Pan Liu1, Li Li2,*, and Yihao Li3 
1Faculty of Business Information, Shanghai Business School, Shanghai 201400, China 

2School of Literature and Journalism, Yichun University, Yichun, China 
3School of Information and Electrical Engineering, Ludong University, Yantai, China 

*corresponding author: 5571990@qq.com 

 

 

Abstract—Heart disease is one of the leading causes of 

death globally, and early diagnosis and prevention of heart 

disease are of great significance. The paper provides a 

correlation analysis of the quantitative and qualitative 

variables on a heart disease dataset. Based on the Pearson 

correlation coefficient matrix, the paper determines the base 

classifiers and uses logistic regression as the meta-classifier 

to construct a stacking ensemble learning model for heart 

disease classification prediction. To address the issue of data 

imbalance, cost-sensitive learning is further introduced, and 

a stacking heart disease classification prediction model based 

on threshold optimization is established. The experimental 

result shows that the stacking heart disease classification 

prediction model achieves a classification accuracy of 

90.16% and demonstrates good generalization ability. Our 

work provides guidance for further research on heart disease 

classification prediction. 

Keywords-stacking integrated learning; Pearson correlation 
coefficient matrix; cost-sensitive learning; threshold 
optimization; prediction of heart disease 

I. INTRODUCTION 

Heart disease is one of the leading causes of death globally. 
According to the report on cardiovascular health and disease 
report in China 2021 [1], Chinese rural and urban areas 
accounted for 46.74% and 44.26% of cardiovascular disease 
(CVD) deaths, respectively, in 2019. The current number of 
individuals affected by cardiovascular disease is 
approximately 330 million. The prevalence and mortality 
rates of cardiovascular disease in China are still on the rise, 
with heart disease patients constituting the majority. However, 
the traditional diagnostic methods [2] for heart disease heavily 
rely on the doctor's experience and expertise, which can lead 
to significant variations in diagnosis among different 
physicians. Therefore, machine learning techniques [3] have 
been proposed to assist in the diagnosis of heart disease in the 
practice. 
In recent years, various scholars have conducted extensive 
research on the diagnosis of heart disease. Wisaeng [4] 
predicted the diagnosis of heart disease using feature selection 
and the k-nearest neighbors algorithm, demonstrating 
promising predictive performance. Yadav and Pal [5] 
proposed a classification prediction method based on chi-
square feature selection and random forest, which can assist 

 
1 https://aistudio.baidu.com/aistudio/datasetdetail/108029 

healthcare professionals in predicting heart diseases. 
Ramachandran et al. [6] utilized the Framingham model to 
predict the incidence of heart disease, providing a scientific 
basis for heart disease prevention. Katarya and Srinivas [7] 
reviewed the research on SVM for heart disease prediction. 
Khan and Kim [8] employed LSTM for classifying and 
predicting heart disease. Wang [9] presented a heart disease 
prediction model based on XGBoost and K-means, verifying 
its feasibility and effectiveness through empirical studies. Guo 
et al. [10] proposed an ensemble learning model based on the 
Stacking algorithm, which can effectively address clinical 
diagnostic issues related to heart disease. Sharma [11] 
designed and developed an ensemble classifier for heart 
disease that integrates Support Vector Machine (SVM), K–
Nearest Neighbor (K-NN), and Weighted K-NN. 
In summary, scholars have employed various machine 
learning and data mining methods for the diagnosis and 
prediction of heart disease. Their aim is to enhance the 
accuracy of the models and achieve better diagnostic results, 
providing precise and reliable assistance for heart disease 
diagnosis. However, most of the existing studies have 
overlooked the issue of cost sensitivity, which is more 
prevalent in the medical field. Therefore, the paper introduces 
the concept of cost-sensitive learning to further investigate the 
classification prediction of heart disease. Then, the paper 
proposes a stacking-based heart disease classification 
prediction model that incorporates cost-sensitive learning, 
aiming to improve the accuracy and generalization capability 
of the model. Our research provides a direction for further 
studies in heart disease classification prediction. 

II. DATA ANALYSIS 

We select a publicly available dataset from PaddlePaddle1 for 

a specific research study. The dataset consists of data from 

303 patients who underwent heart disease examinations, 

including 13 influential features and 1 target feature. The 

specific feature list and their descriptions are shown in Table 

1.  

The dataset consists of a total of 303 samples, with 138 

samples labeled as positive (target = 0) and 165 samples 

labeled as negative. The class distribution is imbalanced, with 

fewer positive samples. In Table 1, among the features, "sex", 

"cp", "fbs", "restecg", "exang", "slope", "thal", and "target" 

are categorical variables, while "age", "trestbps", "chol", 

"thalach", "oldpeak", and "ca" are quantitative variables. 
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TABLE 1. LIST OF DATA SET FEATURE 

Feature Meaning Description 
age Age Age of the patient 
sex Sex 0 = Male; 1 = Female 

cp Chest Pain Type 0 = Typical angina; 1 = Atypical angina; 

2 = Non-anginal pain; 3 = Asymptomatic 
trestbps Resting Blood Pressure Blood pressure at rest measured in mm Hg 

chol Cholesterol Serum cholesterol level in mg/dl 

fbs Fasting Blood Sugar 0 = Fasting blood sugar < 120 mg/dl; 
1 = Fasting blood sugar > 120 mg/dl 

restecg Resting ECG Results 0 = Normal; 1 = Abnormal ST-T wave; 

2 = Possible or definite left ventricular hypertrophy 
thalach Maximum Heart Rate Maximum heart rate achieved 

exang Exercise-Induced Angina 0 = No; 1 = Yes 

oldpeak ST Depression ST depression induced by exercise relative to rest 
slope Slope of ST Segment 0 = Upsloping; 1 = Flat; 2 = Downsloping 

ca Number of Major Vessels Number of major vessels colored by fluoroscopy 

thal Thalassemia  0 = Uncertain; 1 = Normal; 
2 = Fixed defect; 3 = Reversible defect 

target Disease Status 0 = Healthy; 1 = Diseased 

 

 
Figure 1. Diagram of relationship of quantitative variables 
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A. Variable Correlation Analysis 
We create scatter plots between all the quantitative variables 
in Table 1 to examine the relationships between them. The 
scatter plots provide an initial assessment of whether there are 
connections between each pair of variables, as shown in 
Figure 1. The straight lines represent the best-fit linear 
regression lines for each pair of variables. By observing these 
fitted lines, it can be concluded that the linear relationships 
between the variables are weak, and there is no clear evidence 
of significant correlation between them. 
Then, we compute the Pearson correlation coefficients for 
each quantitative relationship and generate a heatmap to 
visualize the results, as shown in Figure 2. It can be observed 
that all the correlation coefficients fall within the range of (-
0.4, 0.4). This indicates that there is no strong correlation 
between the quantitative variables. Therefore, there is no need 
to remove redundant variables as there is no significant 
correlation among them. 

 
Figure 2. A heatmap of correlation coefficients in Table 1 

B. Analysis of qualitative variables 
Figure 3 shows pie charts for all the categorical variables in 
the dataset. It can be observed that in the "target" variable, the 
proportion of diseased individuals is 54.5%, while the 
proportion of healthy individuals is 45.5%. This indicates the 
presence of data imbalance, where the number of diseased 
individuals is higher than the number of healthy individuals. 

 
Figure 3. Pie charts of qualitative variables 

To further analyze the factors influencing heart disease, some 
pie charts specifically for the diseased individuals are plotted 

in Figure 4. Based on the observations, the following 
preliminary conclusions can be drawn: 

1) The proportion of females with heart disease is 
higher than that of males. 

2) Non-anginal chest pain type has a higher proportion 
of individuals with heart disease. 

3) Fasting blood sugar level is an important indicator 
for identifying heart disease. 

4) The presence of ST-T wave abnormalities in the 
electrocardiogram is associated with a higher proportion of 
individuals with heart disease. 

5) Exercise-induced angina has a lower proportion of 
individuals with heart disease. If angina occurs during 
exercise, other diseases should be considered as a priority. 

6) A downward sloping ST segment during exercise is 
associated with a higher proportion of individuals with heart 
disease. 

7) Reversible defects have a higher proportion of 
individuals with heart disease. 
These conclusions provide initial insights into the factors that 
may contribute to heart disease based on the observed 
proportions in the pie chart. 

 
Figure 4. Pie charts of disease data 

C. Data normalization 
Due to the presence of different scales and magnitudes in the 
dataset, it is necessary to perform data normalization before 
building the model. In this study, we adopt the method of Min-
Max normalization, which maps the range of the original data 
to [0, 1]. This approach effectively eliminates the scale 
differences among different variables. The specific formula is 
as follows: 

norm

min

max min

x x
x

x x
                       (1) 

III. STACKING-BASED HEART DISEASE CLASSIFICATION 

PREDICTION MODEL 

A. Stacking ensemble learning model framework 
Stacking, proposed by Wolpert [12] in 1992, consists of two 
parts: base learners and a meta-learner. It is essentially a serial 
multi-level learning system, typically consisting of two layers. 
The first layer is the base learners, composed of several 
different machine learning algorithms. The second layer is the 
meta-learner, which takes the output from the first layer as 
input and produces the final prediction. 
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To generate training samples for the meta-learner and prevent 
overfitting in classic stacking ensemble methods [13], k-fold 
cross-validation is commonly used. K-fold cross-validation 
randomly divides the dataset into k mutually exclusive and 
equally sized subsets. The model is trained on k-1 subsets and 
tested on the remaining subset. This process is repeated for all 
possible k selections, and the results are used as new sample 
features. 
The specific steps of the stacking ensemble learning model in 
the paper are as follows: 
1) Input the dataset = {( , ); = 1, 2, 3, … , 5 )} and 

split it into the original training set = {( , ); =
1, 2, 3, … , 4 )}  and the original test set =
{( , ); = 1, 2, 3, … , )} in a 4:1 ratio. 

2) Apply k-fold cross-validation on the original training set 
 to train n base classifiers , , … , , and 

generate the secondary training set =
{( , , , … , ); = 1, 2, 3, … , 4 }, where  is the 
label of the corresponding data in the original training set, 

and , , … , ; = 1,2,3, … ,4  are the 

classification results of the j-th base classifier on . 
Stacking typically uses the predicted class labels, but this 
model uses predicted class probability values, which are 
more suitable for further research on the problem. 

3) During the k-fold cross-validation training process of the 
base classifiers, the original test set is also evaluated k 
times, and the average is taken to generate the secondary 
test set = {( , , , … , ); = 1,2,3, … , }. 

4) Train the meta-classifier model on the secondary training 
set  and test it on the secondary test set . 

 
The model framework is shown in Figure 5. 
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Figure 5. The framework of the Stacking model 

 

B. Modelling 
The selection and combination of base classifiers and meta-
classifiers are crucial for the Stacking ensemble model. In the 
selection of base classifiers, this study initially considers 
seven algorithms as candidates: Random Forest (RF), Logistic 
Regression (LR), K-Nearest Neighbors (KNN), Linear SVM 
(LSVM), Gaussian Kernel SVM (RSVM), Naive Bayes (NB), 
and Gradient Boosting Decision Trees (GBDT). The selection 
of base classifiers follows the principle of "good and diverse," 
which means choosing models with strong learning abilities 
and significant differences to improve the overall predictive 
performance of the model [14]. The accuracy of each classifier 
is measured to evaluate the learning ability of the model, as 
shown in Table 2. 

TABLE 2. ACCURACY OF EACH CLASSIFIER 

Classifier Accuracy  
RF 85.90% 

LR 85.57% 

KNN 82.62% 

LSVM 86.23% 

RSVM 84.92% 
NB 85.57% 

GBDT 81.64% 

From Table 2, it can be observed that the accuracy of each 
classifier is above 80%, indicating a certain level of predictive 

capability. Among them, the Linear SVM (LSVM) has the 
highest accuracy, reaching 86.23%, while the Gradient 
Boosting Decision Trees (GBDT) has the lowest accuracy, 
only 81.64%. To further consider the diversity of individual 
classifiers, we compare the Pearson correlation coefficients 
among the models to measure their differences. The 
correlation coefficients are calculated based on the class 
probability values of each classifier on the original training 
set. The correlation matrix heatmap is shown in Figure 6. 

 
Figure 6. A Heatmap of Correlation Matrix of Base Classifiers 
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By examining the lower values in Figure 6, which indicate 
lower correlation coefficients and greater differences between 
classifiers, we can observe that the correlation coefficients 
among the classifiers are all above 0.7, indicating strong 
correlations. The lowest correlation coefficient is between 
GBDT and NB, as well as between GBDT and KNN, with a 
value of only 0.76. The correlation coefficient between NB 
and KNN is 0.81, which is also relatively low. Therefore, 
based on this observation, we tentatively select these three 
classifiers (GBDT, NB, and KNN) as the base classifiers for 
further research. 
In the selection of the second-layer meta-classifier, it is 
generally recommended to choose a model with strong 
generalization ability and simplicity. This is done to correct 
any biases introduced by multiple algorithms on the training 
set and to prevent overfitting [15]. For classification problems, 
existing researches have shown that logistic regression is a 
good choice [16]. Therefore, the paper uses logistic regression 
as the meta-classifier. 
Based on the above, the paper selects KNN, NB, and GBDT 
as the base classifiers, and LR as the meta-classifier. The class 
probabilities generated by KNN, NB, and GBDT are used to 
create a secondary training set. The LR algorithm is then 
trained on this set and tested on the secondary test set. The 
stacking model using this combination achieves a final 
accuracy of 88.52%, higher than the accuracy of any 
individual classifier. To further validate the rationale for the 
selection of base classifiers, various combinations of base 
classifiers were trained, and the results are shown in Table 3. 
It can be observed that their accuracies are all lower than 
88.52%. 

TABLE 3. DIFFERENT COMBINATIONS OF BASE CLASSIFIERS AND THEIR 

ACCURACY 
Combination Accuracy 

KNN+NB+GBDT 88.52% 

LR+LSVM+RSVM 83.61% 
RF+KNN 83.61% 

RF+KNN+LR 86.89% 

LR+LSVM+GBDT 85.25% 

RSVM+LSVM+GBDT 83.61% 

Finally, the heart disease classification prediction model based 
on stacking is obtained, and its specific framework is shown 
in Figure 7. 

Dataset

KNN NB GBDT

Base learner

LR Meta-learner

Prediction

Figure 7. Our model frame diagram 

C. Evaluation Metrics 
Due to the issue of imbalanced data distribution, the 
classification results are often influenced by the majority 
class, leading to a bias towards the class with more samples 
and overlooking the class with fewer samples. Using a single 
evaluation metric makes it challenging to comprehensively 
assess the model's performance. Therefore, this study utilizes 
the comprehensive evaluation metrics of the ROC curve and 
AUC to provide a more accurate and comprehensive 
evaluation of the model. The ROC curve plots the true positive 
rate against the false positive rate for various classification 
thresholds, and the AUC represents the area under the ROC 
curve. These metrics allow for a thorough assessment of the 
model's performance. Please refer to Figure 8 for the 
visualization of the ROC curve and AUC. 

 
Figure 8. ROC curves of models 

It can be observed that the ROC curves of each classifier are 
relatively close to each other, without one curve completely 
enclosing another. The visual comparability is not strong. By 
calculating the area under the ROC curve (AUC) for each 
classifier, it is found that the AUC values for all classifiers fall 
within the range of 0.85 to 0.95, indicating good performance. 
Among them, the AUC of the Stacking classifier is 0.91, 
which is lower than RF, LR, LSVM, and RSVM. This 
suggests that the Stacking model still has room for 
improvement and further optimization. 

IV. COST-SENSITIVE LEARNING 

A. Basic conception 
Traditional machine learning methods always assume equal 
class sizes or equal misclassification costs, which is clearly 
unreasonable. This approach can easily lead to 
misclassifications and degrade classification performance 
[17]. However, the dataset chosen in this study clearly exhibits 
such a situation. 
Currently, cost-sensitive learning methods can be broadly 
classified into the following three categories [18]: data 
preprocessing methods, post-processing methods, and direct 
cost-sensitive learning methods. 

 Data preprocessing methods primarily include sampling 
methods and weighting methods, which aim to modify 
the original dataset to create a balanced dataset. 
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 Post-processing methods address the cost-sensitive 
learning problem by adjusting the classifier's decision 
threshold. Examples of such methods include MetaCost, 
ETA, and cost-sensitive neural networks. 

 Direct cost-sensitive learning methods directly embed 
cost information into the objective function of the 
learning model. By minimizing the expected loss, these 
methods obtain the final learning algorithm. The specific 
algorithms employed in this approach vary depending on 
different algorithms and application scenarios [19]. 

B. Threshold Optimization 
We further introduce the idea of cost-sensitive learning. For 
the prediction of heart disease, misdiagnosing healthy people 
as patients will only increase some follow-up examinations in 
most cases and waste certain medical resources. However, 
misdiagnosing patients as healthy people is likely to make 
patients miss the optimal treatment time and eventually lose 
their lives. Compared to the former, the latter error is more 
serious. Therefore, it is necessary to adjust the threshold 
appropriately to enhance the ability to identify individuals 
with heart disease. In contrast, the traditional logistic 
regression model defaults to a threshold of 0.5, classifying 
values greater than 0.5 as diseased and values less than 0.5 as 
healthy. Since there is a need to enhance the recognition of 
individuals with heart disease, the threshold needs to be 
lowered to increase the probability of identifying individuals 
as diseased. 
Based on the threshold optimization logistic regression model 
for breast cancer prediction proposed by Mavaddat et al. [20], 
the paper further optimized the model to determine the 
optimal classification threshold. During the process of 
plotting the ROC curve, thresholds are selected one by one. 
Therefore, in this study, the ROC curve was plotted on the 
secondary training set, and the F1-score was used as the 
evaluation metric. The threshold corresponding to the highest 
F1-score was selected as the optimal classification threshold. 
The optimal threshold was found to be 0.4019*, as shown in 
Figure 9. Finally, by adjusting the predictions of the logistic 
regression model using the optimal threshold on the secondary 
test set, it was observed that the accuracy was further 
improved. The final accuracy reached 90.16%, which is a 
1.64% improvement compared to the original model. 

 
Figure 10. Best classification threshold 

V. CONCLUSIONS 

The paper focuses on building a stacking model for heart 
disease data and determining the best combination of base 
classifiers based on their correlation coefficients. KNN, NB, 
and GBDT are chosen as the base classifiers in the first layer, 
and 5-fold cross-validation is applied to prevent overfitting. A 
simple logistic regression model is used as the meta-classifier 
in the second layer, and it is found that the final model 
achieves higher accuracy than individual classifiers, 
demonstrating good generalization ability. 
To address the issue of imbalanced heart disease data, cost-
sensitive learning is introduced, and further improvement is 
achieved by optimizing the threshold to adjust the prediction 
results. This leads to an increased accuracy of the model, 
making it more suitable for diagnostic prediction in the 
medical field. However, most of the parameters in this study 
are set to their default values, and further research can be 
conducted to optimize the overall performance of the model 
through parameter tuning. 
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