
Using the Deep Learning-Based Approaches for Program Debugging and Repair 

Abstract—Maintenance is the most labor-intensive stage in 

the Software System Development Life Cycle (SDLC). 

When an error is detected, an Automatic Program Repair 

(APR) system can locate the error by utilizing fault 

prediction and then employ search-based or semantic-based 

repair techniques to attempt to fix it. Finally, the program 

repair system runs test cases to verify that the errors have 

been properly repaired and the program's functionality has 

not been compromised. In this study, we present a novel 

approach called Deep Learning Based GenProg (DLBGP), 

which combines deep learning with APR. Our proposed 

method involves extracting node vectors from the program's 

Abstract Syntax Tree (AST) and identifying semantic 

features using a Deep Brief Network (DBN). These semantic 

features are then used to predict the accuracy of the repair 

candidates. In experiments conducted on ten subject files in 

the IntroClass database, our proposed DLBGP model 

reduced execution time by 64% compared to GenProg while 

achieving the same number of successful test cases. In 

summary, we offer a fast, efficient, and easily deployable 

deep learning program repair method that could prove 

beneficial to the field of APR. 

Keywords—automatic program repair; search-based repair; 
genetic programming; deep learning; deep brief network 

1. INTRODUCTION 

The information system is a crucial component in many 

modern companies, directly impacting their business 

operations. However, even major systems like Hotmail, 

Office 365, Gmail, and Amazon cloud have experienced 

serious errors, resulting in service interruptions ranging from 

minutes to hours, and in some cases, loss of customer data 

[1]-[3]. Thus, it is imperative for the industry to provide 

stable and high-quality information systems. Software 

Development Life Cycle (SDLC) is a common method for 

deploying information systems, consisting of stages such as 

requirement definition, system analysis, system design, 

system development, system testing, and system 

maintenance. Software maintenance is known to consume 

significant resources and time [4], with 90% of the software 

project cost attributed to this phase [5]. In the US alone, 

software maintenance costs can reach up to 70 billion 

annually [6][7], highlighting the need to reduce software 

maintenance costs as a critical issue in SDLC. Automatic 

Program Repair (APR) is a superior approach for software 

maintenance due to its efficient resource utilization and 

ability to ensure stable repair quality. The process of 

validating the fitness of repair candidates is a critical step in 

APR, and the most commonly used method is to utilize test 

cases to verify their performance. This approach, known as 

test-suite based repair [8], forms the foundation of our study, 

where candidates that successfully pass more test cases are 

retained while those that fail to meet the required standards 

are eliminated. 

The main problem with test-suite based repair is time-

consuming task. For example, the state-of-the-art APR 

technology GenProg [9] spent 62.75% of the execution time 

on testing on average for 16 target programs. For some target 

programs, it even spent over 90% of the execution time on 

testing. With the increasing scale of the program and the 

increasing number of test cases, testing may consume large 

amounts of the execution time. To solve this problem, we 

tried to use deep learning to accelerate testing and to reduce 

the whole execution time of the APR. We regarded deep 

learning as a solution because it is widely used in classifying 

large amounts of data, and it has achieved many impressive 

successes in lots of studies. Deep learning currently focuses 

on several aspects in the field of software testing: (1) test 

cases generation [10], (2) test suite reduction [11]-[13], (3) 

test suite optimization [14][15], and (4) test case execution 

scheduling [16]. Based on previous research, we propose 

Deep Learning Based GenProg (DLBGP) as our solution. 

Genetic programming was used as foundation of our test-

suite based program repair system, and we used a deep 

learning model named Deep Brief Network (DBN) to predict 

the fitness of repair candidates. If fitness is smaller than the 

threshold that is determined by empirical statistics, our 

method regards this repair candidate as defective. This 

defective candidate would not execute test cases and it would 

not be retained to the next generation. That is the reason why 

our method has less execution time.  

We use published IntroClass [17] based on ten subject files 

to validate our method. The experiment results have shown 

that our method spent 212.9003 seconds of repair time 

totally, and GenProg spent 597.9942 seconds of repair time 

totally. Our method reduced 64% of the execution time while 

passing the same number of test cases as traditional methods 

did. It is obvious that our method can reduce lots of time and 

has a better performance. The major contributions of this 

paper are listed below: (1) it combines deep learning 

technology with APR based on genetic programming, (2) the 

proposed method DLBGP can significantly reduce execution 

time compared to traditional search-based repair methods 
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while maintaining the similar repair quality. Avoid re-

running test cases for each variant, and (3) it conducted 

sensitivity analysis on some genetic programming 

parameters and recorded the related change of modified 

repair time, respectively. The rest of the paper is organized 

as follows. Firstly, we briefly review the related process of 

APR in Section 2. In Section 3, we describe both the overall 

information and the detailed design and the implementation 

of our method. Some experimental results and discussions 

are presented in Section 4. Finally, some conclusions and 

future works are described in Section 5. 

2. RELATED WORK 

Basically, bug fixing is a major part of the software 

maintenance phase. The following will focus on the current 

repair methods: 1) semantic-based repair, and 2) search-

based repair, respectively. 

2.1. Semantic-based repair 

Semantic-based repair focuses on solving the function in the 

program. Figure 1 illustrates symbolic execution operation 

and constraint solving is shown in Figure 2 to analyze code 

and figure out the execution paths in all conditions. There are 

some related researches. For example, Nguyen et al. [18] 

presented SemFix, which solves the requirement to pass a 

given test suite as a constraint. Xuan et al. [19] proposed 

Nopol, which takes a buggy program with a test suite as input 

and generates a patch with a conditional expression as 

output. Mechtaev et al. [20] presented DirectFix, which 

generates the simplest patch such that the program structure 

of the buggy program is maximally preserved. Mechtaev et 

al. [21] presented Angelix, which is more scalable than the 

past methods.  

 
Figure 1. Symbolic execution 

 

void f (int x, int y) { 

    int z = 2*y; 

    if (x == 10000) { 

        if (x < z) { 

            assert(0); 

        } 

    } 

} 

 

Figure 2. Constraint solving 

2.2. Search-based repair 

It is also known as the iterative generate-and-validate 

technique that is shown in Figure 3. The overall process can 

be divided into four steps:  

 Analyze the program to be repaired 
Convert the programming language into another format that 

is easy to analyze. For example, the abstract syntax tree 

(AST), which is now widely used in the compiler field, is a 

well-known representation [22]. Many automatic repair tools 

use AST to record the program. 

 Produce repair candidates 
This step tries to fix the error and results in many repair 

candidates. Some literatures indicate that certain specific 

errors can be fixed by copying and arranging the existing 

source codes [23]-[26]. Such a technique is known as 

redundancy-based repair. The method of arranging and 

combining is often done using genetic algorithms. Common 

operations include insertion, deletion, and exchange. There 

are also advanced discussions on the operation of mutation 

in recent literature [27]. 

 Search for candidates 
This step searches for the right candidates. Most of the 

current repair methods randomly pick up candidates from the 

pool and evaluate their fitness. Some literatures attempt to 

rank candidates in order to shorten the search time [28][29]. 

 Evaluate candidate fitness 
This step considers whether the repair candidate can correct 

the error. The most common method is executing test cases 

to check whether the program achieves the needed functions. 

If some test cases fail, some unrepaired errors exist in the 

program. On the other hand, if all test cases are executed 

correctly, the program is repaired with no error. The above 

process is called test-suite based repair [8]. This 

methodology seems to be great, but there are three major 

problems: (1) test case generation is not easy, (2) testing is 

time consuming, and (3) testing may produce an overfitted 

repair.  
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Figure 3. Generate-and-validate technique 

There are some famous repair tools which use the search-

based method. For example, Geoues et al. [9] proposed 

GenProg, which extends genetic programming to evolve a 

program variant and retains the required functionality but it 

is not susceptible to a given defect. Kim et al. [30] proposed 

PAR, which uses fix patterns learned from existing human-

written patches to generate program patches automatically. 

Long et al. [31] proposed SPR, which combines the staged 

program repair and the condition synthesis together. 

There are still some related researches on APR and software 

reliability. Lin and Huang [32] proposed a framework which 

described possible debugging behavior using queueing 

theory analysis during software development process. Wong 

et al. [33] designed a solution by employing the source code 

level technologies to debugging software designs 

represented in a high-level specification and description 

language such as SDL. You et al. [34] proposed a 

methodology of modifying similarity coefficients on 

spectrum-based fault localization (SBFL). This method can 

effectively identify the faults. Wong et al. [35]-[37] 

investigated different kinds of methods in fault localization 

and discussed key issues and concerns so that the related 

researchers can understand the trends and directions. Dutta 

et al. [38] presented an ensemble classifier based on fault 

localization to effectively identify the common and intrinsic 

faults. Li and Liu [39] further analyzed five distance metrics 

impact and evaluated five SBFL techniques in multiple fault 

localization. Their findings are obtained list of different 

criteria and a list of factors to evaluate the fault-focused 

clustering and SBFL performance. Lee et al. [40] proposed a 

fault-based genetic-like programming approach that 

heuristically searches all possible variants. This method can 

find the best repairs with fewer operations and less time than 

the previous genetic programming did.  

Although there are many related researches about APR, all 

of them suffered from a long execution time, especially in 

the testing time. In actuality, we observed these methods and 

noticed that testing is the process of classifying repair 

candidates. This is similar to the situation in which it is 

proper to use deep learning. Deep learning techniques are 

used in variety of fields, and some studies have begun to 

apply this emerging technology to the field of software 

repair. Yokoyama et al. [28] applied deep learning to the 

sorting of repair ingredients. It is a quicker way to find 

suitable repair candidates than the traditional methods do. 

These studies not only allow us to see the potential of deep 

learning but also to motivate our research.  

3. DEEP LEARNING BASED GENPROG 

3.1. Overview of deep learning based GenProg 

In this study, we use DBN to determine if the program is 

wrong, and the result is going to help the program repair 

system to decrease execution time. In the beginning, we used 

a tool to parse and analysis source codes, which contains the 

correct program and the wrong program. Since DBN needs 

the integer vector as input data, we build a mapping between 

the analysis result, which are the AST nodes, and the integer. 

After preparing the integer vector, this data is used to train a 

DBN. Then, our method is able to recognize whether there is 

any defect in a program. The architecture of our method can 

be shown in Figure 4.  

 

Figure 4. Work flow of DLBGP 
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Our method consists of several major steps: (1) sanity 

checking, (2) initializing population, (3) selecting 

candidates, (4) crossover, (5) mutation, (6) fitness 

evaluation, and (7) repeating above (3)-(6) steps until the 

termination condition is achieved. Now, we combine the 

model to the search-based program repair system. The 

system will parse the original program and generate lots of 

candidates in the first generation. Our method has to 

complete this real-time operation, which includes parsing 

candidates, encoding token vectors to integer vectors, 

interpreting vectors, and returning its prediction to the 

program repair system. If the model has a low confidence for 

this candidate, the program repair system will use test cases 

to check the correction of it, which is same as the traditional 

way. However, if the model has a high confidence for this 

candidate, the program repair system will adopt the model’s 

suggestion and decrease the procedure of validation. This 

proposed framework can skip redundant testing and improve 

the efficiency of repair.  

3.2. Sanity Check 

The input data required by our method contains the source 

code file and a suite of test cases (Negative/Positive). 

Negative test cases can indicate errors in the program, in 

contrast to positive test cases can verify the function of the 

program. The first step in our program repair model is to 

perform a sanity check, which is to check whether the test 

case execution result is consistent with the tester's result. If 

the execution results are consistent, the program repair 

system will record the execution paths from positive test 

cases and negative test cases. These paths will be used during 

the subsequent repair process. If the execution results are 

inconsistent and the functions of the program are not clearly 

reflected. The program repair system will be terminated. 

3.3. Program Representation 

Our method employs a data-based representation for each 

variant (i.e., candidate program), comprising of: (1) an AST 

representation that encompasses each statement within 

program, and (2) Constructing a weighted path includes a 

sequence list of statements that are executed by this test case. 

The weighted path denotes a sequence of pairs <statement, 

weight> that can facilitate the program repair system in 

applying mutation operators to a smaller and more 

appropriate subset of the program tree. This unique 

representation enables us to address scaling challenges in the 

domain of genetic programming, allowing for the application 

of our method to larger programs. Moreover, our approach 

does not permit genetic operators to generate new 

statements; otherwise, statements from other parts of the 

program tree are borrowed. Statements that are not included 

in the weighted path remain unaltered, though they may be 

duplicated to the weighted path by the mutation operator. 

Each generated variant retains the same number of pairs and 

sequences in the weighted path. 

Constructing a weighted path utilizes a transformation that 

each statement is to assign a unique number and record each 

statement visited during execution. Redundant statements in 

the list are removed and frequently accessed statements (e.g., 

for loop) are not suitable for modification. We respect the 

order of statements, determined when they are first accessed, 

resulting in a weighted path that is a sequence rather than a 

set. Each statement is considered a candidate for repair when 

executed in a negative test case, with an initial weight of 

0.65. The weights of all other statements are set to 0.0 and 

remain unchanged. Statements in negative test cases are 

adjusted if they were executed in positive test cases. The 

objective is to prioritize statements that may cause 

undesirable behavior, while avoiding modification of 

statements that impact desirable behavior. 

3.4. Selecting Candidates 

Our method picks individual variants and copies them to the 

next generation. There are many possible selection 

algorithms  [41][42] that have same characteristic: a suitable 

individual will be more distributed in the next generation 

than an unsuitable individual does. First, we discard 

individuals with a fitness of 0 (fitness=0 means the 

individual cannot be compiled or cannot pass any test cases) 

and use other individuals whose fitness is more than 0 to 

replace the remaining positions. Then we use tournament 

selection [41] to select the pop_size/2 number of members 

from the previous generation to a new generation.  

3.5. Crossover 

The crossover operation re-combines two variants to 

generate a new descendant that amalgamates information 

from both parents. Each variant can only serve as a parent 

once at most in the crossover operation within a given 

generation. We select a cutoff point on the path and exchange 

all the statements after the cutoff point. The detailed 

crossover operation is illustrated in Figure 5. Given that input 

variants A=[a1, a2, a3, a4, a5, a6, a7] and B=[b1, b2, b3, b4, 

b5, b6, b7], with a cutoff point set at 3, the resulting next 

generation variants would be C=[a1, a2, a3, b4, b5, b6, b7] 

and D=[b1, b2, b3, a4, a5, a6, a7]. In our method, only the 

statements on the weighted path undergo crossover. 

Although there are various types of crossover operators, 

literature suggests that their outcomes are comparable to 

those of single-point crossover [9]. 

 

 

Figure 5. Crossover Operation 
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3.6. Mutation 

Mutation has a low probability of modifying any given 

statement on the weighted path, and any changes made to the 

statements will be reflected in its AST. The likelihood of 

mutation for each statement is proportional to the weight of 

the path. Specifically, a statement that appears only in 

negative test cases has first choice considered for mutation, 

while a statement that appears in both positive and negative 

test cases has a lower chance of being mutated. The 

maximum probability of mutation for each statement is 

determined by the global mutation rate. 

In general, there are two ways for traditional mutation 

operations such as single bit flips and simple symbolic 

substitutions. Here, two ways are not suitable to our 

situation. Our basic element is a statement and mutation 

operators are also complex, as illustrated in Figure 6. It 

includes insertion (where another statement is inserted after 

the current position), deletion (where the entire statement is 

removed), or replacement (where one statement is replaced 

by another). The probabilities of these mutation operations 

are determined based on empirical investigations or statistics 

on types of fault behavior. Specifically, we set the 

probabilities of insertion, deletion, and replacement to 0.24, 

0.4, and 0.36, respectively. 

In the insertion operation, we convert Stmt1 into a statement 

with Stmt1 attached to Stmt2. In the deletion operation, we 

convert Stmt1 into a blank statement instead of deleting it 

directly, in order to maintain a consistent path length for each 

variant. This allows a deleted statement to still be used in 

subsequent mutation operations. In the replacement 

operation, Stmt1 is replaced by Stmt2. For insertion and 

replacement, the second statement (Stmt2) is randomly 

chosen from anywhere in the program, not just from the 

weighted path. The weight of the statement does not affect 

the probability of it being selected as a candidate repair, as 

our intuition is that the repair candidate may be located 

anywhere in the program, not necessarily on the negative 

path. It should be noted that in some cases, a mutated variant 

may fail to compile successfully. In such cases, that variant 

will not be used further in the process.

3.7. Fitness Evaluation 

The objective of fitness evaluation is to estimate the quality 

of repair candidates. Traditionally, executing test cases has 

been a common method for this purpose, where repair 

candidates that pass more test cases are considered higher 

priority. However, testing can be time-consuming, which is 

why we incorporate deep learning into our fitness evaluation 

process to address this issue. Our method can be divided into 

four parts: (1) source code analysis, (2) encoding token 

vectors to integer identifiers, (3) training a deep learning 

model, and (4) using our method to predict defects. The 

detailed flow chart of our fitness evaluation system is 

depicted in Figure 7.   

 
Figure 6.  Mutation flow chart 

 

 

Figure 7. Work flow of our fitness evaluation system 
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 Source code analysis 
In our study, it is necessary to figure out semantic and 

structural information from source code in order to train our 

deep learning model. One question we need to answer is what 

granularity of representation is appropriate for each source 

code to be represented as a vector. Common options for 

granularity include character-level, token-level, and nodes 

on Abstract Syntax Trees (ASTs), among others. Research 

has shown that using nodes on ASTs as the granularity for 

representation is suitable for building program 

representations [43]. ASTs are commonly used in the field of 

compilers and program repair as they retain both semantic 

and structural information of programs. ASTs serve as a 

structured representation of the code, capturing the syntactic 

structure, relationships between statements, and their 

corresponding semantics, making them a valuable tool for 

various program analysis and manipulation tasks. [44][45]. 

The above mentioned rationale is why we have opted for 

ASTs as our chosen representation for programs. 

We utilize C Intermediate Language (CIL) [46] to parse and 

extract information from the C code. CIL is capable of 

performing various simplifying transformations to the C 

AST, making it highly suitable for rapid prototyping of new 

static and dynamic analyses, as well as designing and 

experimenting with new language extensions, as per the 

state-of-the-art method [47], we exclusively utilize three 

types of nodes: (1) method invocation and class instance 

creation nodes, (2) declaration nodes encompassing method 

declarations, data declarations, type declarations, and enum 

declarations, and (3) control-flow nodes including if 

statements, switch statements, and loop statements, among 

others. Nodes that are not mentioned above are not preserved 

as they may not be conducive to cross-project prediction. As 

function, class, and type names are often project-specific, we 

rely on their AST node types such as method declarations 

and method invocations instead of their names. 

 Encoding token vectors to integer identifiers 
Due to the requirement of a digital vector as input in DBN, 

the token vector cannot be directly fed into the DBN. 

Therefore, we must transform the token vector into an integer 

vector. Each token is a unique integer identifier that its range 

is between 1 and the maximum number of tokens. Due to our 

method needs to consider cross-project defect prediction 

(CPDP) architecture, we encode the type of token rather than 

the method name or class name of the token. Moreover, the 

converted integer vectors may have varying lengths, which 

is not compatible with DBN's requirement of fixed-length 

input vectors. To reconcile this, we append 0 to the integer 

vector so that each vector is of the same length as the longest 

vector. The value 0 does not hold any meaning in our case as 

we start encoding from 1, and this conversion is a 

straightforward approach to make the vector compatible with 

DBN. It is noted that the sequence of tokens still retains 

unchanged and the structural information of the program is 

preserved.     

 Training deep learning model 
We use the powerful capabilities of DBN to generate features 

and capture code semantic information and structural 

information. Based on the above information, DBN will 

make a defect evaluation of the program. We train our DBN's 

weight and biases through training data, and DBN will get 

the features which are difficult to be observed but can 

distinguish semantic differences. DBN learns the probability 

that each node traverses to the previous level. With 

backpropagation validation, DBN automatically adjusts the 

weights of nodes in different layers to reconstruct the input 

data used to generate features. 

Considering that this study only uses DBN as a pure 

application, we use a standard architecture DBN instead of a 

sophisticated and complex experimental architecture 

[48][49]. In this paragraph, the parameters of our DBN will 

be described. For simplifying network architecture, the 

number of nodes in each layer will be set to the same. In 

particular, our DBN is a binary classifier that contains one 

input layer, three number of hidden layers, and one output 

layer. Each hidden layer consists of 100 neurons, and one 

neuron for output layer. All nodes on the previous layer will 

be connected to all nodes on the next layer by weighted 

edges. The higher the value of weight, the greater the 

influence of the upper node on the next layer of nodes. We 

use the sigmoid activation function in output layer. On the 

contrary, all other layers use ReLU activation functions. 

Binary_Crossentropy is used as the loss function of binary 

classification and Adam optimizer is selected. The epoch 

number is 50. The batch_size is 100, which is the same as the 

input layer’s length. The probability of dropping out is 0, and 

the rate of validation is 0.2. The scale of our training data is 

336000 tokens, which are extracted from the databases 

described in Section 4.1. Our method is implemented by 

Keras API. Keras API is high-level deep learning library 

written in Python programming language that runs on 

TensorFlow framework. Keras API is widely used in many 

related research [50] and the neural networks with these 

hidden layers and nodes can be built easily. 

DBN requires input data with values ranging from 0 to 1, 

whereas our input vector contains integer values based on our 

mapping approach. To get better performance and meet the 

need of DBN, we separately employ min-max normalization 

in both training data and testing data vectors. After 

normalization, the normalized data can still effectively 

distinguish between different nodes as the same identifiers 

retain the same values.         

 Using our DBN to predict defects 
After calculation, our deep learning model will output a 

score, which represents the possibility that the individual 

contains defects. If this score exceeds our default threshold, 

our fitness evaluation system determines that the individual 

is the wrong program and sends a positive predictive result 

to our program repair system. On the other hand, if the score 
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does not exceed the threshold, our fitness evaluation system 

cannot confirm whether the individual is correct or not. It 

will send the negative predictive result to our program repair 

system. Our program repair system will make different 

treatments based on different predictive results. If the 

predictive result is positive, the program repair system will 

set the individual's fitness to 0, indicating that the individual 

is wrong. If the predictive result is negative, the program 

repair system will execute test cases for the individual, and 

use the fitness function to evaluate the fitness of the 

individual based on the test result. 

Table 1 is the performance of our defect prediction model. 

According to this table, the value of recall in the negative 

scenario is the best. Therefore, we decide to use this model 

to filter out negative candidate repairs. Only positive 

candidate repairs need to execute test cases. Although this 

model is simple, we will still get much benefit from this 

architecture and we leave the defect prediction model as a 

future work. 

 

Table 1. Performance of our defect prediction model 
 Precision Recall F1-score 

Positive Scenario 0.65 0.29 0.38 

Negative Scenario 0.53 0.77 0.62 

Avg/Total 0.54 0.53 0.51 

 

4. EXPERIMENTS 

In this section, we used DLBGP to repair errors in the defect 

program database. Our hardware platform is Intel 2.6GHz i7-

6700HQ machine with 16GB RAM. 

4.1. Experimental Setup 

 Programs and defects 
Two common databases are used in this study to train the 

deep learning model and evaluate program repair system 

performance are IntroClass [17] and ITSP [51]. The first 

IntroClass benchmark has totally six subject C programs and 

each one is written by novices. These programs are from 

programming assignments in an introductory, undergraduate 

C programming course. It consists of 259 repositories, 587 C 

files, and 13470 non-comment line of codes. Here, the 

authors want the IntroClass benchmark to be representative 

of both the type and frequency of the new developers' 

mistakes, they don't remove duplicate errors from their 

datasets.  

Table 2 is the overall information of the IntroClass 

benchmark and the description of the subject programs. ITSP 

[51], an intelligent tutoring system for programming, is a 

system whose goal is to identify errors in student’s programs 

and to provide appropriate feedback to students to help them 

fix their programs. Its dataset is obtained from an 

introductory C programming course (CA-101) offered by 

Amey Karkare who serves at Indian Institute of Technology 

Kanpur (IIT-K). The feature of this benchmark is that their 

programs are often severely incorrect. 60% of the programs 

in this benchmark fail more than half of the available test 

cases, and half of the programs require heavy modification 

to correct the errors. It consists of 661 repositories, 1395 C 

files, and 41878 non-comment line of codes. For the purpose 

of representation of both the type and frequency of novices' 

mistakes, this dataset keeps the duplicate errors from student 

programs. Table 3 is the overall information and description 

about the second ITSP dataset. P1 indicates weekly 

programming assignments termed Lab3, P2 indicates Lab4, 

P3 indicates Lab5, and P10 indicates Lab12 in the database, 

respectively. Table 4 lists some errors category about the 

ITSP dataset. This study compared the experimental results 

to two traditional repair methods. One method is GenProg 

[9], and another method is AE [52]. Both traditional methods 

are open-source so we can make sure that their performance 

is consistent as expected. 

Table 2. The six IntroClass Benchmark subject programs
IntroClass Benchmark 

Program Repo Files Blank Comment Code Defects Unique 
Defects 

Description 

Checksum 21 49 347 79 948 69 47 Compute a simple checksum of a string. 

Digits 55 145 1186 352 4357 236 144 Compute the number of digits in an integer. 

Grade 50 140 880 182 3080 268 136 
Compute the letter grade corresponding to a percentage 

score. 

Median 44 100 578 147 1975 232 98 Compute the median of three numbers. 

Smallest 45 87 516 120 1686 177 84 Compute the smallest of three numbers. 

Syllables 44 66 437 121 1424 161 63 Compute the number of English syllables in a string. 

Total 259 587 3944 1001 13470 1143 572 Compute a simple checksum of a string. 

Table 3. The ten ITSP Benchmark subject programs 

ITSP Benchmark 
Program Repo Files Blank Comment Code Topic 
P1 63 130 314 1553 1775 Simple Expressions, printf, scanf 

P2 117 242 550 2443 5161 Conditionals 

P3 82 172 635 4764 4181 Loops, Nested Loops 

P4 79 166 759 8852 4719 Integer Arrays 

P5 71 150 611 3400 5046 Character Arrays (Strings) and Functions 

P6 33 71 551 2387 3550 Multi-dimensional Arrays (Matrices) 
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P7 48 104 523 31647 2761 Recursion 

P8 53 114 664 3153 5098 Pointers 

P9 55 118 458 6567 4334 Algorithms (sorting, permutations, puzzles) 

P10 60 128 854 7833 5253 Structures (User-Defined data-types) 

Total 661 1395 5919 72599 41878 Simple Expressions, printf, scanf 

 

Table 4. Errors category of ITSP Benchmark subject 

programs 
ITSP Benchmark 

Errors Category Frequency 
Wrong Conditions for Control-Flow 48 

Missing Character 8 

String Modifications 5 

Array Accesses 4 

User defined Functions 4 

Missing Values in the Output 4 

Library Functions 3 

Others  3 

Missing Whitespace in the Output 2 

Floating Point Operations 1 

  

 Parameter of genetic programming 
We describe our genetic programming parameters set which 

works well in our experimental environment. The maximum 

number of generations is 10, which is smaller than the 

traditional genetic programming applications. We choose 

pop_size as 40 (also a small number). For pos-weight and 

neg-weight, we set it to 0.65 and 0.35 respectively. In related 

research, we know that it is possible to obtain more precise 

weights by the fitness distance correlation metric [53][54]. 

Because the simple parameters still performed well enough, 

we continued to use them and to leave the fitness distance 

correlation metric as a future work. We set 1 as the seed of 

the random number generator. This will make our 

experiment repeatable. 

4.2. Repair Results 

Table 5 shows the repair time in the IntroClass benchmark, 

and Table 6 is the repair time in the ITSP benchmark. We 

selected 10 subject files from 587 files in the IntroClass 

database and we selected 4 subject files from 1395 files in 

the ITSP dataset. We compared the execution time between 

AE [52], GenProg, and our method. The common parameters 

of the genetic programming in all program repair systems 

were the same, such as pop_size, pos_weight, and 

neg_weight. It should be noticed that the following 

comparisons are based on such a situation that a particular 

program repaired by our method is able to pass the same 

number of test cases as other methods. The result presents 

that our method has less execution time than GenProg in 

most of the subject files.  

Besides, our method has less execution time than AE when 

it doesn’t consider the 10th subject file in Table , which is 

unable to be repaired by AE. The improvement is not 

significant to the files whose execution time is little, because 

the overhead of utilizing the deep learning model to predict 

a fault may exceed the saving of testing time. However, the 

improvement is more significant to the files whose execution 

time is long. For example, our method took 144.231 seconds 

in the 10th file in Table 5. It reduces a 70% execution time 

compared to the traditional method. In the 1st subject file of 

Table 6, our method took 54.9693 seconds to repair the bugs. 

It reduces 24% repair time compared to GenProg and 50% 

repair time compared to AE, respectively. It should be noted 

that we used the same parameters of genetic programming 

for AE, GenProg, and our method, so we couldn’t guarantee 

all program repair systems had their optimized performance. 

That may be the reason why AE failed to repair some subject 

files. 

Table 5. Repair time of each repair systems in the 

IntroClass Benchmark 
Subject files GenProg (s) AE (s) Our method (s) 

1 6.88042 5.45556 6.35275 

2 6.05169 5.66346 2.31514 

3 15.1142 19.8711 11.7605 

4 17.9337 13.1493 8.36506 

5 27.523 12.7939 15.9251 

6 7.40185 2.36285 2.42728 

7 7.65303 3.74622 3.22963 

8 1.74478 2.54894 2.28522 

9 27.0875 12.7178 16.0086 

10 480.604 ends 144.231 

Total 597.9942 78.30913 212.9003 

Average 59.79942 8.701014 21.29003 

Table 6. Repair time of each repair systems in the ITSP 

Benchmark 

Subject files GenProg (s) AE (s) Our method (s) 
1 72.4508 109.392 54.9693 

2 24.3634 fail 18.3466 

3 3.99539 4.30927 5.26607 

4 20.4068 1.89187 9.76669 

Total 121.2164 115.5931 88.34866 

Average 30.3041 38.53105 22.08717 

Table 7 is the average CPU usage of 10 subject files in the 

IntroClass benchmark. According to this table, it is clear that 

our method has a less average CPU usage than both GenProg 

and AE do. For example, our method reduces 22% average 

CPU usage compared to both GenProg and AE for the first 

subject file. On average, our method reduces 12% average 

CPU usage compared to GenProg, and it reduces 11% 

average CPU usage compared to AE for 10 subject files, 

respectively. This result indicates that our method is able to 

reduce hardware resource cost in repair compared to 

GenProg and AE because of a lower average CPU usage.  

Table 8 is the average CPU usage of 4 subject files in the 

ITSP benchmark. According to this table, it is clear that our 

method has less average CPU usage than both GenProg and 

AE do. For example, our method reduces 31% average CPU 
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usage compared to GenProg and 40% average CPU usage 

compared to AE for 2nd subject file. On average, our method 

reduces 21% average CPU usage compared to GenProg, and 

it reduces 23% average CPU usage compard to AE for 4 

subject files, respectively. This result indicates that our 

method is able to reduce hardware resource cost in repair 

compared to both GenProg and AE because of a lower 

average CPU usage. 

Table 7. Average CPU usage of IntroClass Benchmark 

Table 8. Average CPU usage of ITSP Benchmark 
Subject files GenProg (%) AE (%) Our method (%) 

1 98.3896 98.5263 94.3996 

2 76.6799 89.1263 53.2712 

3 94.2807 97.0273 63.1775 

4 99.1853 95.0414 79.9593 

Average 92.133875 94.930325 72.7019 

4.3. Sensitivity Analysis 

In this section, we conducted sensitivity analysis to our 

method in order to study the effect of the principal 

parameters, such as pop_size, pos_weight, and neg_weight. 
We noticed that the parameters of genetic programming do 

affect the repair time and repair result. Therefore, we have to 

evaluate these parameters for some subject files to observe 

the performance of our method. Although we did not analyze 

all parameters, this section helps us to estimate the optimal 

parameters to achieve the best performance of a particular 

subject file [55]-[57]. In this study, we define 

Relative Change ( ) =  (1) 

where ORT is the original repair time, and MRT is the 

modified repair time [58]. 

 Effect of variations on pop_size 
In Section 4.2, we have obtained the original repair time for 

several subject programs. In this paragraph, we present the 

modified repair time concerning the change of pop_size. We 

selected 3 subject files from the IntroClass benchmark, and 

we modified the value of pop_size by increasing or 

decreasing 40%, 30%, 20%, or 10%. For other genetic 

programming parameters, we kept the same value described 

in Section 4.1. Table 9 shows some numerical values of the 

modified repair time for the cases of 40%, 30%, 20%, and a 

10% increase to pop_size. In the situation of increasing 

pop_size, our method’s RC ranges from -0.056 to 0.14, and 

GenProg’s RC ranges from -0.079 to 0.071. Table 10 shows 

some numerical values of the modified repair time for the 

cases of 40%, 30%, 20%, and a 10% decrease to pop_size. In 

the situation of decreasing pop_size, our method’s RC ranges 

from -0.203 to 5.824, and GenProg’s RC ranges from -0.418 

to 20.541. The result indicates that the effect of pop_size is 

different for each subject file. For example, the MRT of 

subject program 2 in Table 10 is unstable, and RC is up to 

20.541. However, the MRT of subject programs 1 and 3 

remain steady, no matter whether pop_size is increasing or 

decreasing. It seems that there is no global optimal value of 

pop_size for multiple files. On the other hand, these tables 

show that our method has less MRT than GenProg has in 

most of the cases whether pop_size is increasing or 

decreasing.  

Table 9. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% increase in pop_size 
 pop_size × 1.4 pop_size × 1.3 pop_size × 1.2 pop_size × 1.1 
Subject 

File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP 

1 7.0242 6.8109 7.0993 6.558 7.3657 7.2684 6.6386 6.1801 

2 14.0957 11.4858 13.9267 12.0661 13.989 11.4309 14.4476 11.1637 

3 18.2919 8.1408 17.9898 7.898 18.2461 7.9493 18.0489 8.1801 

Table 10. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% decrease in pop_size 
 pop_size × 0.6 pop_size × 0.7 pop_size × 0.8 pop_size × 0.9 

Subject 
File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP 

1 7.2917 6.724 7.3212 6.2833 6.9382 6.6565 6.5636 6.5678 

2 148.696 27.2938 15.7623 11.1674 23.5298 45.9627 583.425 95.6477 

3 17.9612 fail 18.0112 8.72 18.0211 7.9451 17.9451 7.9232 

 Effect of variations on pos_weight and neg_weight 
In this paragraph, we present the modified repair time 

analysis with regards to changes in pos_weight and 

neg_weight. We conducted experiments on 3 subject files 

from the IntroClass benchmark, modifying the values of 

pos_weight and neg_weight by increasing or decreasing 

them by 40%, 30%, 20%, or 10%. Other genetic 

programming parameters were kept unchanged as described 

in Section 4.1. Table 11 displays the numerical values of the 

modified repair time for the cases of a 40%, 30%, 20%, and 

10% increase in pos_weight. When pos_weight is increased, 

our method's RC ranges from -0.083 to 0.124, while 

Subject files GenProg (%) AE (%) Our method (%) 
1 98.9911 98.6245 77.4131 

2 98.8127 92.0419 86.8776 

3 99.1214 98.7623 88.9947 

4 99.643 98.9343 87.3346 

5 98.9667 99.0151 88.592 

6 98.2941 97.5107 79.8431 

7 99.2769 97.8204 89.0364 

8 97.4571 97.5871 91.3175 

9 98.8774 98.9552 89.2382 

10 99.8371 98.7902 96.0511 

Average 98.92775 97.80417 87.46983 
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GenProg's RC ranges from -0.111 to 0.09. Table 12 presents 

the numerical values of the modified repair time for the cases 

of a 40%, 30%, 20%, and 10% decrease in pos_weight. When 

pos_weight is decreased, our method's RC ranges from -0.07 

to 2.911, while GenProg's RC ranges from -0.417 to 0.099. 

Table 13 shows the numerical values of the modified repair 

time for the cases of a 40%, 30%, 20%, and 10% increase in 

neg_weight. When neg_weight is increased, our method's RC 

ranges from -0.089 to 3.06, while GenProg's RC ranges from 

-0.378 to 0.234. Table 14 displays the numerical values of 

the modified repair time for the cases of a 40%, 30%, 20%, 

and 10% decrease in neg_weight. When neg_weight is 

decreased, our method's RC ranges from -0.894 to 0.276, 

while GenProg's RC ranges from -0.903 to 0.087. The results 

indicate that the effect of pos_weight and neg_weight varies 

across different subject files. For instance, the range of MRT 

for subject program 2 in Table 12 is higher than for other 

subject files, with RC reaching up to 2.911. However, the 

range of MRT for subject files 1 and 3 remains stable 

regardless of whether pos_weight is increased or decreased. 

It appears that there are no global optimal values of 

pos_weight and neg_weight for multiple files. Additionally, 

these tables demonstrate that our method consistently has 

lower MRT compared to GenProg in most cases, regardless 

of whether pos_weight and neg_weight are increased or 

decreased. 

Table 11. Repair time in seconds of GenProg and DLBGP for the Case of 40%, 30%, 20%, and a 10% increase in pos_weight 
 pos_weight × 1.4 pos_weight × 1.3 pos_weight × 1.2 pos_weight × 1.1 

Subject 
File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP 

1 7.3216 7.1223 6.9628 7.1301 7.0945 6.9621 7.4979 7.038 

2 26.5344 13.8479 25.3756 13.7507 24.0897 14.8573 24.8189 12.8564 

3 17.7299 9.4065 17.7668 9.1841 18.0882 8.6125 18.3667 8.1535 

Table 12. Repair time in seconds of GenProg and DLBGP for the Case of 40%, 30%, 20%, and a 10% decrease in pos_weight 
 pos_weight × 0.6 pos_weight × 0.7 pos_weight × 0.8 pos_weight × 0.9 
Subject 

File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP 

1 7.0274 6.7494 7.5598 6.5084 7.3458 6.9846 6.9099 6.9944 

2 15.7959 54.8165 16.8985 20.2647 17.3614 13.3629 24.5035 13.0390 

3 18.2164 8.6375 18.2140 7.8163 18.0758 8.1645 18.1200 7.9047 

TABLE 13. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% increase in 

neg_weight 
 neg_weight × 1.4 neg_weight × 1.3 neg_weight × 1.2 neg_weight × 1.1 
Subject 
Program GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP 

1 8.4892 6.4053 8.3420 6.7461 7.8897 6.5830 7.2879 6.7048 

2 17.0780 56.9087 16.8517 14.2788 24.5157 13.0488 24.8748 12.7664 

3 17.9951 8.1328 18.0670 9.2514 17.9058 8.6669 18.2277 8.4560 

Table 14. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% decrease in neg_weight 
 neg_weight × 0.6 neg_weight × 0.7 neg_weight × 0.8 neg_weight × 0.9 
Subject 
Program GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP 

1 6.7492 6.2987 7.4819 6.3881 6.7959 6.2755 6.8023 6.9360 

2 2.6342 1.4819 24.6171 13.0545 24.1398 13.3283 24.3401 12.8233 

3 17.9115 9.5296 17.8956 10.6740 17.8754 9.8434 18.0636 10.4919 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduce DLBGP, a novel APR technology 

that integrates GenProg, deep learning, and genetic 

programming. Our approach generates repaired programs 

progressively while preserving necessary functions and 

mitigating specific program errors. To address the challenge 

of a large search space in genetic programming, we employ 

various techniques, including limited attention to statements, 

focusing on genetic operations on weighted paths based on 

test case coverage, and leveraging repeat usage of existing 

program statements. To predict faults, we utilize a 

representation-learning methodology to extract semantic 

features from the source code. Specifically, we employ the 

Deep Brief Network (DBN) to automatically learn semantic 

features from node vectors extracted from the program's 

Abstract Syntax Tree (AST). In our experiments, our method 

significantly reduced execution time by 64% compared to 

traditional methods among the 10 subject programs. In 

modern software development environments, where 

understanding entire software packages and lacking 

sufficient test cases and time for verifying target programs 

can be challenging for software engineers, DLBGP can serve 

as a valuable tool for debugging and fixing software program 

errors, eliminating the need for spending days on repairs or 

resorting to risky temporary solutions. Although we did not 
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evaluate the performance of our method on larger defective 

programs due to limited resources and the scale of our deep 

learning model, we leave this as future work. Moving 

forward, we plan to explore different types of deep learning 

models to assess their effectiveness in APR.      
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