
Using the Deep Learning-Based Approaches for Program Debugging and Repair

Abstract—Maintenance is the most labor-intensive stage in

the Software System Development Life Cycle (SDLC).

When an error is detected, an Automatic Program Repair

(APR) system can locate the error by utilizing fault

prediction and then employ search-based or semantic-based

repair techniques to attempt to fix it. Finally, the program

repair system runs test cases to verify that the errors have

been properly repaired and the program's functionality has

not been compromised. In this study, we present a novel

approach called Deep Learning Based GenProg (DLBGP),

which combines deep learning with APR. Our proposed

method involves extracting node vectors from the program's

Abstract Syntax Tree (AST) and identifying semantic

features using a Deep Brief Network (DBN). These semantic

features are then used to predict the accuracy of the repair

candidates. In experiments conducted on ten subject files in

the IntroClass database, our proposed DLBGP model

reduced execution time by 64% compared to GenProg while

achieving the same number of successful test cases. In

summary, we offer a fast, efficient, and easily deployable

deep learning program repair method that could prove

beneficial to the field of APR.

Keywords—automatic program repair; search-based repair;
genetic programming; deep learning; deep brief network

1. INTRODUCTION

The information system is a crucial component in many

modern companies, directly impacting their business

operations. However, even major systems like Hotmail,

Office 365, Gmail, and Amazon cloud have experienced

serious errors, resulting in service interruptions ranging from

minutes to hours, and in some cases, loss of customer data

[1]-[3]. Thus, it is imperative for the industry to provide

stable and high-quality information systems. Software

Development Life Cycle (SDLC) is a common method for

deploying information systems, consisting of stages such as

requirement definition, system analysis, system design,

system development, system testing, and system

maintenance. Software maintenance is known to consume

significant resources and time [4], with 90% of the software

project cost attributed to this phase [5]. In the US alone,

software maintenance costs can reach up to 70 billion

annually [6][7], highlighting the need to reduce software

maintenance costs as a critical issue in SDLC. Automatic

Program Repair (APR) is a superior approach for software

maintenance due to its efficient resource utilization and

ability to ensure stable repair quality. The process of

validating the fitness of repair candidates is a critical step in

APR, and the most commonly used method is to utilize test

cases to verify their performance. This approach, known as

test-suite based repair [8], forms the foundation of our study,

where candidates that successfully pass more test cases are

retained while those that fail to meet the required standards

are eliminated.

The main problem with test-suite based repair is time-

consuming task. For example, the state-of-the-art APR

technology GenProg [9] spent 62.75% of the execution time

on testing on average for 16 target programs. For some target

programs, it even spent over 90% of the execution time on

testing. With the increasing scale of the program and the

increasing number of test cases, testing may consume large

amounts of the execution time. To solve this problem, we

tried to use deep learning to accelerate testing and to reduce

the whole execution time of the APR. We regarded deep

learning as a solution because it is widely used in classifying

large amounts of data, and it has achieved many impressive

successes in lots of studies. Deep learning currently focuses

on several aspects in the field of software testing: (1) test

cases generation [10], (2) test suite reduction [11]-[13], (3)

test suite optimization [14][15], and (4) test case execution

scheduling [16]. Based on previous research, we propose

Deep Learning Based GenProg (DLBGP) as our solution.

Genetic programming was used as foundation of our test-

suite based program repair system, and we used a deep

learning model named Deep Brief Network (DBN) to predict

the fitness of repair candidates. If fitness is smaller than the

threshold that is determined by empirical statistics, our

method regards this repair candidate as defective. This

defective candidate would not execute test cases and it would

not be retained to the next generation. That is the reason why

our method has less execution time.

We use published IntroClass [17] based on ten subject files

to validate our method. The experiment results have shown

that our method spent 212.9003 seconds of repair time

totally, and GenProg spent 597.9942 seconds of repair time

totally. Our method reduced 64% of the execution time while

passing the same number of test cases as traditional methods

did. It is obvious that our method can reduce lots of time and

has a better performance. The major contributions of this

paper are listed below: (1) it combines deep learning

technology with APR based on genetic programming, (2) the

proposed method DLBGP can significantly reduce execution

time compared to traditional search-based repair methods

Tzu-Yang Lin, Chin-Yu Huang*, and Chih-Chiang Fang

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

jesssorry@gmail.com, cyhuang@cs.nthu.edu.tw,neilfang112113@gmail.com

*corresponding author

443

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/23/$31.00 ©2023 IEEE
DOI 10.1109/DSA59317.2023.00059

while maintaining the similar repair quality. Avoid re-

running test cases for each variant, and (3) it conducted

sensitivity analysis on some genetic programming

parameters and recorded the related change of modified

repair time, respectively. The rest of the paper is organized

as follows. Firstly, we briefly review the related process of

APR in Section 2. In Section 3, we describe both the overall

information and the detailed design and the implementation

of our method. Some experimental results and discussions

are presented in Section 4. Finally, some conclusions and

future works are described in Section 5.

2. RELATED WORK

Basically, bug fixing is a major part of the software

maintenance phase. The following will focus on the current

repair methods: 1) semantic-based repair, and 2) search-

based repair, respectively.

2.1. Semantic-based repair

Semantic-based repair focuses on solving the function in the

program. Figure 1 illustrates symbolic execution operation

and constraint solving is shown in Figure 2 to analyze code

and figure out the execution paths in all conditions. There are

some related researches. For example, Nguyen et al. [18]

presented SemFix, which solves the requirement to pass a

given test suite as a constraint. Xuan et al. [19] proposed

Nopol, which takes a buggy program with a test suite as input

and generates a patch with a conditional expression as

output. Mechtaev et al. [20] presented DirectFix, which

generates the simplest patch such that the program structure

of the buggy program is maximally preserved. Mechtaev et

al. [21] presented Angelix, which is more scalable than the

past methods.

Figure 1. Symbolic execution

void f (int x, int y) {

 int z = 2*y;

 if (x == 10000) {

 if (x < z) {

 assert(0);

 }

 }

}

Figure 2. Constraint solving

2.2. Search-based repair

It is also known as the iterative generate-and-validate

technique that is shown in Figure 3. The overall process can

be divided into four steps:

 Analyze the program to be repaired
Convert the programming language into another format that

is easy to analyze. For example, the abstract syntax tree

(AST), which is now widely used in the compiler field, is a

well-known representation [22]. Many automatic repair tools

use AST to record the program.

 Produce repair candidates
This step tries to fix the error and results in many repair

candidates. Some literatures indicate that certain specific

errors can be fixed by copying and arranging the existing

source codes [23]-[26]. Such a technique is known as

redundancy-based repair. The method of arranging and

combining is often done using genetic algorithms. Common

operations include insertion, deletion, and exchange. There

are also advanced discussions on the operation of mutation

in recent literature [27].

 Search for candidates
This step searches for the right candidates. Most of the

current repair methods randomly pick up candidates from the

pool and evaluate their fitness. Some literatures attempt to

rank candidates in order to shorten the search time [28][29].

 Evaluate candidate fitness
This step considers whether the repair candidate can correct

the error. The most common method is executing test cases

to check whether the program achieves the needed functions.

If some test cases fail, some unrepaired errors exist in the

program. On the other hand, if all test cases are executed

correctly, the program is repaired with no error. The above

process is called test-suite based repair [8]. This

methodology seems to be great, but there are three major

problems: (1) test case generation is not easy, (2) testing is

time consuming, and (3) testing may produce an overfitted

repair.

444

Buggy

Program
Patch

Mutation

Generation 1 Generation 2

Fitness =

#passing tests

Figure 3. Generate-and-validate technique

There are some famous repair tools which use the search-

based method. For example, Geoues et al. [9] proposed

GenProg, which extends genetic programming to evolve a

program variant and retains the required functionality but it

is not susceptible to a given defect. Kim et al. [30] proposed

PAR, which uses fix patterns learned from existing human-

written patches to generate program patches automatically.

Long et al. [31] proposed SPR, which combines the staged

program repair and the condition synthesis together.

There are still some related researches on APR and software

reliability. Lin and Huang [32] proposed a framework which

described possible debugging behavior using queueing

theory analysis during software development process. Wong

et al. [33] designed a solution by employing the source code

level technologies to debugging software designs

represented in a high-level specification and description

language such as SDL. You et al. [34] proposed a

methodology of modifying similarity coefficients on

spectrum-based fault localization (SBFL). This method can

effectively identify the faults. Wong et al. [35]-[37]

investigated different kinds of methods in fault localization

and discussed key issues and concerns so that the related

researchers can understand the trends and directions. Dutta

et al. [38] presented an ensemble classifier based on fault

localization to effectively identify the common and intrinsic

faults. Li and Liu [39] further analyzed five distance metrics

impact and evaluated five SBFL techniques in multiple fault

localization. Their findings are obtained list of different

criteria and a list of factors to evaluate the fault-focused

clustering and SBFL performance. Lee et al. [40] proposed a

fault-based genetic-like programming approach that

heuristically searches all possible variants. This method can

find the best repairs with fewer operations and less time than

the previous genetic programming did.

Although there are many related researches about APR, all

of them suffered from a long execution time, especially in

the testing time. In actuality, we observed these methods and

noticed that testing is the process of classifying repair

candidates. This is similar to the situation in which it is

proper to use deep learning. Deep learning techniques are

used in variety of fields, and some studies have begun to

apply this emerging technology to the field of software

repair. Yokoyama et al. [28] applied deep learning to the

sorting of repair ingredients. It is a quicker way to find

suitable repair candidates than the traditional methods do.

These studies not only allow us to see the potential of deep

learning but also to motivate our research.

3. DEEP LEARNING BASED GENPROG

3.1. Overview of deep learning based GenProg

In this study, we use DBN to determine if the program is

wrong, and the result is going to help the program repair

system to decrease execution time. In the beginning, we used

a tool to parse and analysis source codes, which contains the

correct program and the wrong program. Since DBN needs

the integer vector as input data, we build a mapping between

the analysis result, which are the AST nodes, and the integer.

After preparing the integer vector, this data is used to train a

DBN. Then, our method is able to recognize whether there is

any defect in a program. The architecture of our method can

be shown in Figure 4.

Figure 4. Work flow of DLBGP

445

Our method consists of several major steps: (1) sanity

checking, (2) initializing population, (3) selecting

candidates, (4) crossover, (5) mutation, (6) fitness

evaluation, and (7) repeating above (3)-(6) steps until the

termination condition is achieved. Now, we combine the

model to the search-based program repair system. The

system will parse the original program and generate lots of

candidates in the first generation. Our method has to

complete this real-time operation, which includes parsing

candidates, encoding token vectors to integer vectors,

interpreting vectors, and returning its prediction to the

program repair system. If the model has a low confidence for

this candidate, the program repair system will use test cases

to check the correction of it, which is same as the traditional

way. However, if the model has a high confidence for this

candidate, the program repair system will adopt the model’s

suggestion and decrease the procedure of validation. This

proposed framework can skip redundant testing and improve

the efficiency of repair.

3.2. Sanity Check

The input data required by our method contains the source

code file and a suite of test cases (Negative/Positive).

Negative test cases can indicate errors in the program, in

contrast to positive test cases can verify the function of the

program. The first step in our program repair model is to

perform a sanity check, which is to check whether the test

case execution result is consistent with the tester's result. If

the execution results are consistent, the program repair

system will record the execution paths from positive test

cases and negative test cases. These paths will be used during

the subsequent repair process. If the execution results are

inconsistent and the functions of the program are not clearly

reflected. The program repair system will be terminated.

3.3. Program Representation

Our method employs a data-based representation for each

variant (i.e., candidate program), comprising of: (1) an AST

representation that encompasses each statement within

program, and (2) Constructing a weighted path includes a

sequence list of statements that are executed by this test case.

The weighted path denotes a sequence of pairs <statement,

weight> that can facilitate the program repair system in

applying mutation operators to a smaller and more

appropriate subset of the program tree. This unique

representation enables us to address scaling challenges in the

domain of genetic programming, allowing for the application

of our method to larger programs. Moreover, our approach

does not permit genetic operators to generate new

statements; otherwise, statements from other parts of the

program tree are borrowed. Statements that are not included

in the weighted path remain unaltered, though they may be

duplicated to the weighted path by the mutation operator.

Each generated variant retains the same number of pairs and

sequences in the weighted path.

Constructing a weighted path utilizes a transformation that

each statement is to assign a unique number and record each

statement visited during execution. Redundant statements in

the list are removed and frequently accessed statements (e.g.,

for loop) are not suitable for modification. We respect the

order of statements, determined when they are first accessed,

resulting in a weighted path that is a sequence rather than a

set. Each statement is considered a candidate for repair when

executed in a negative test case, with an initial weight of

0.65. The weights of all other statements are set to 0.0 and

remain unchanged. Statements in negative test cases are

adjusted if they were executed in positive test cases. The

objective is to prioritize statements that may cause

undesirable behavior, while avoiding modification of

statements that impact desirable behavior.

3.4. Selecting Candidates

Our method picks individual variants and copies them to the

next generation. There are many possible selection

algorithms [41][42] that have same characteristic: a suitable

individual will be more distributed in the next generation

than an unsuitable individual does. First, we discard

individuals with a fitness of 0 (fitness=0 means the

individual cannot be compiled or cannot pass any test cases)

and use other individuals whose fitness is more than 0 to

replace the remaining positions. Then we use tournament

selection [41] to select the pop_size/2 number of members

from the previous generation to a new generation.

3.5. Crossover

The crossover operation re-combines two variants to

generate a new descendant that amalgamates information

from both parents. Each variant can only serve as a parent

once at most in the crossover operation within a given

generation. We select a cutoff point on the path and exchange

all the statements after the cutoff point. The detailed

crossover operation is illustrated in Figure 5. Given that input

variants A=[a1, a2, a3, a4, a5, a6, a7] and B=[b1, b2, b3, b4,

b5, b6, b7], with a cutoff point set at 3, the resulting next

generation variants would be C=[a1, a2, a3, b4, b5, b6, b7]

and D=[b1, b2, b3, a4, a5, a6, a7]. In our method, only the

statements on the weighted path undergo crossover.

Although there are various types of crossover operators,

literature suggests that their outcomes are comparable to

those of single-point crossover [9].

Figure 5. Crossover Operation

446

3.6. Mutation

Mutation has a low probability of modifying any given

statement on the weighted path, and any changes made to the

statements will be reflected in its AST. The likelihood of

mutation for each statement is proportional to the weight of

the path. Specifically, a statement that appears only in

negative test cases has first choice considered for mutation,

while a statement that appears in both positive and negative

test cases has a lower chance of being mutated. The

maximum probability of mutation for each statement is

determined by the global mutation rate.

In general, there are two ways for traditional mutation

operations such as single bit flips and simple symbolic

substitutions. Here, two ways are not suitable to our

situation. Our basic element is a statement and mutation

operators are also complex, as illustrated in Figure 6. It

includes insertion (where another statement is inserted after

the current position), deletion (where the entire statement is

removed), or replacement (where one statement is replaced

by another). The probabilities of these mutation operations

are determined based on empirical investigations or statistics

on types of fault behavior. Specifically, we set the

probabilities of insertion, deletion, and replacement to 0.24,

0.4, and 0.36, respectively.

In the insertion operation, we convert Stmt1 into a statement

with Stmt1 attached to Stmt2. In the deletion operation, we

convert Stmt1 into a blank statement instead of deleting it

directly, in order to maintain a consistent path length for each

variant. This allows a deleted statement to still be used in

subsequent mutation operations. In the replacement

operation, Stmt1 is replaced by Stmt2. For insertion and

replacement, the second statement (Stmt2) is randomly

chosen from anywhere in the program, not just from the

weighted path. The weight of the statement does not affect

the probability of it being selected as a candidate repair, as

our intuition is that the repair candidate may be located

anywhere in the program, not necessarily on the negative

path. It should be noted that in some cases, a mutated variant

may fail to compile successfully. In such cases, that variant

will not be used further in the process.

3.7. Fitness Evaluation

The objective of fitness evaluation is to estimate the quality

of repair candidates. Traditionally, executing test cases has

been a common method for this purpose, where repair

candidates that pass more test cases are considered higher

priority. However, testing can be time-consuming, which is

why we incorporate deep learning into our fitness evaluation

process to address this issue. Our method can be divided into

four parts: (1) source code analysis, (2) encoding token

vectors to integer identifiers, (3) training a deep learning

model, and (4) using our method to predict defects. The

detailed flow chart of our fitness evaluation system is

depicted in Figure 7.

Figure 6. Mutation flow chart

Figure 7. Work flow of our fitness evaluation system

447

 Source code analysis
In our study, it is necessary to figure out semantic and

structural information from source code in order to train our

deep learning model. One question we need to answer is what

granularity of representation is appropriate for each source

code to be represented as a vector. Common options for

granularity include character-level, token-level, and nodes

on Abstract Syntax Trees (ASTs), among others. Research

has shown that using nodes on ASTs as the granularity for

representation is suitable for building program

representations [43]. ASTs are commonly used in the field of

compilers and program repair as they retain both semantic

and structural information of programs. ASTs serve as a

structured representation of the code, capturing the syntactic

structure, relationships between statements, and their

corresponding semantics, making them a valuable tool for

various program analysis and manipulation tasks. [44][45].

The above mentioned rationale is why we have opted for

ASTs as our chosen representation for programs.

We utilize C Intermediate Language (CIL) [46] to parse and

extract information from the C code. CIL is capable of

performing various simplifying transformations to the C

AST, making it highly suitable for rapid prototyping of new

static and dynamic analyses, as well as designing and

experimenting with new language extensions, as per the

state-of-the-art method [47], we exclusively utilize three

types of nodes: (1) method invocation and class instance

creation nodes, (2) declaration nodes encompassing method

declarations, data declarations, type declarations, and enum

declarations, and (3) control-flow nodes including if

statements, switch statements, and loop statements, among

others. Nodes that are not mentioned above are not preserved

as they may not be conducive to cross-project prediction. As

function, class, and type names are often project-specific, we

rely on their AST node types such as method declarations

and method invocations instead of their names.

 Encoding token vectors to integer identifiers
Due to the requirement of a digital vector as input in DBN,

the token vector cannot be directly fed into the DBN.

Therefore, we must transform the token vector into an integer

vector. Each token is a unique integer identifier that its range

is between 1 and the maximum number of tokens. Due to our

method needs to consider cross-project defect prediction

(CPDP) architecture, we encode the type of token rather than

the method name or class name of the token. Moreover, the

converted integer vectors may have varying lengths, which

is not compatible with DBN's requirement of fixed-length

input vectors. To reconcile this, we append 0 to the integer

vector so that each vector is of the same length as the longest

vector. The value 0 does not hold any meaning in our case as

we start encoding from 1, and this conversion is a

straightforward approach to make the vector compatible with

DBN. It is noted that the sequence of tokens still retains

unchanged and the structural information of the program is

preserved.

 Training deep learning model
We use the powerful capabilities of DBN to generate features

and capture code semantic information and structural

information. Based on the above information, DBN will

make a defect evaluation of the program. We train our DBN's

weight and biases through training data, and DBN will get

the features which are difficult to be observed but can

distinguish semantic differences. DBN learns the probability

that each node traverses to the previous level. With

backpropagation validation, DBN automatically adjusts the

weights of nodes in different layers to reconstruct the input

data used to generate features.

Considering that this study only uses DBN as a pure

application, we use a standard architecture DBN instead of a

sophisticated and complex experimental architecture

[48][49]. In this paragraph, the parameters of our DBN will

be described. For simplifying network architecture, the

number of nodes in each layer will be set to the same. In

particular, our DBN is a binary classifier that contains one

input layer, three number of hidden layers, and one output

layer. Each hidden layer consists of 100 neurons, and one

neuron for output layer. All nodes on the previous layer will

be connected to all nodes on the next layer by weighted

edges. The higher the value of weight, the greater the

influence of the upper node on the next layer of nodes. We

use the sigmoid activation function in output layer. On the

contrary, all other layers use ReLU activation functions.

Binary_Crossentropy is used as the loss function of binary

classification and Adam optimizer is selected. The epoch

number is 50. The batch_size is 100, which is the same as the

input layer’s length. The probability of dropping out is 0, and

the rate of validation is 0.2. The scale of our training data is

336000 tokens, which are extracted from the databases

described in Section 4.1. Our method is implemented by

Keras API. Keras API is high-level deep learning library

written in Python programming language that runs on

TensorFlow framework. Keras API is widely used in many

related research [50] and the neural networks with these

hidden layers and nodes can be built easily.

DBN requires input data with values ranging from 0 to 1,

whereas our input vector contains integer values based on our

mapping approach. To get better performance and meet the

need of DBN, we separately employ min-max normalization

in both training data and testing data vectors. After

normalization, the normalized data can still effectively

distinguish between different nodes as the same identifiers

retain the same values.

 Using our DBN to predict defects
After calculation, our deep learning model will output a

score, which represents the possibility that the individual

contains defects. If this score exceeds our default threshold,

our fitness evaluation system determines that the individual

is the wrong program and sends a positive predictive result

to our program repair system. On the other hand, if the score

448

does not exceed the threshold, our fitness evaluation system

cannot confirm whether the individual is correct or not. It

will send the negative predictive result to our program repair

system. Our program repair system will make different

treatments based on different predictive results. If the

predictive result is positive, the program repair system will

set the individual's fitness to 0, indicating that the individual

is wrong. If the predictive result is negative, the program

repair system will execute test cases for the individual, and

use the fitness function to evaluate the fitness of the

individual based on the test result.

Table 1 is the performance of our defect prediction model.

According to this table, the value of recall in the negative

scenario is the best. Therefore, we decide to use this model

to filter out negative candidate repairs. Only positive

candidate repairs need to execute test cases. Although this

model is simple, we will still get much benefit from this

architecture and we leave the defect prediction model as a

future work.

Table 1. Performance of our defect prediction model
 Precision Recall F1-score

Positive Scenario 0.65 0.29 0.38

Negative Scenario 0.53 0.77 0.62

Avg/Total 0.54 0.53 0.51

4. EXPERIMENTS

In this section, we used DLBGP to repair errors in the defect

program database. Our hardware platform is Intel 2.6GHz i7-

6700HQ machine with 16GB RAM.

4.1. Experimental Setup

 Programs and defects
Two common databases are used in this study to train the

deep learning model and evaluate program repair system

performance are IntroClass [17] and ITSP [51]. The first

IntroClass benchmark has totally six subject C programs and

each one is written by novices. These programs are from

programming assignments in an introductory, undergraduate

C programming course. It consists of 259 repositories, 587 C

files, and 13470 non-comment line of codes. Here, the

authors want the IntroClass benchmark to be representative

of both the type and frequency of the new developers'

mistakes, they don't remove duplicate errors from their

datasets.

Table 2 is the overall information of the IntroClass

benchmark and the description of the subject programs. ITSP

[51], an intelligent tutoring system for programming, is a

system whose goal is to identify errors in student’s programs

and to provide appropriate feedback to students to help them

fix their programs. Its dataset is obtained from an

introductory C programming course (CA-101) offered by

Amey Karkare who serves at Indian Institute of Technology

Kanpur (IIT-K). The feature of this benchmark is that their

programs are often severely incorrect. 60% of the programs

in this benchmark fail more than half of the available test

cases, and half of the programs require heavy modification

to correct the errors. It consists of 661 repositories, 1395 C

files, and 41878 non-comment line of codes. For the purpose

of representation of both the type and frequency of novices'

mistakes, this dataset keeps the duplicate errors from student

programs. Table 3 is the overall information and description

about the second ITSP dataset. P1 indicates weekly

programming assignments termed Lab3, P2 indicates Lab4,

P3 indicates Lab5, and P10 indicates Lab12 in the database,

respectively. Table 4 lists some errors category about the

ITSP dataset. This study compared the experimental results

to two traditional repair methods. One method is GenProg

[9], and another method is AE [52]. Both traditional methods

are open-source so we can make sure that their performance

is consistent as expected.

Table 2. The six IntroClass Benchmark subject programs
IntroClass Benchmark

Program Repo Files Blank Comment Code Defects Unique
Defects

Description

Checksum 21 49 347 79 948 69 47 Compute a simple checksum of a string.

Digits 55 145 1186 352 4357 236 144 Compute the number of digits in an integer.

Grade 50 140 880 182 3080 268 136
Compute the letter grade corresponding to a percentage

score.

Median 44 100 578 147 1975 232 98 Compute the median of three numbers.

Smallest 45 87 516 120 1686 177 84 Compute the smallest of three numbers.

Syllables 44 66 437 121 1424 161 63 Compute the number of English syllables in a string.

Total 259 587 3944 1001 13470 1143 572 Compute a simple checksum of a string.

Table 3. The ten ITSP Benchmark subject programs

ITSP Benchmark
Program Repo Files Blank Comment Code Topic
P1 63 130 314 1553 1775 Simple Expressions, printf, scanf

P2 117 242 550 2443 5161 Conditionals

P3 82 172 635 4764 4181 Loops, Nested Loops

P4 79 166 759 8852 4719 Integer Arrays

P5 71 150 611 3400 5046 Character Arrays (Strings) and Functions

P6 33 71 551 2387 3550 Multi-dimensional Arrays (Matrices)

449

P7 48 104 523 31647 2761 Recursion

P8 53 114 664 3153 5098 Pointers

P9 55 118 458 6567 4334 Algorithms (sorting, permutations, puzzles)

P10 60 128 854 7833 5253 Structures (User-Defined data-types)

Total 661 1395 5919 72599 41878 Simple Expressions, printf, scanf

Table 4. Errors category of ITSP Benchmark subject

programs
ITSP Benchmark

Errors Category Frequency
Wrong Conditions for Control-Flow 48

Missing Character 8

String Modifications 5

Array Accesses 4

User defined Functions 4

Missing Values in the Output 4

Library Functions 3

Others 3

Missing Whitespace in the Output 2

Floating Point Operations 1

 Parameter of genetic programming
We describe our genetic programming parameters set which

works well in our experimental environment. The maximum

number of generations is 10, which is smaller than the

traditional genetic programming applications. We choose

pop_size as 40 (also a small number). For pos-weight and

neg-weight, we set it to 0.65 and 0.35 respectively. In related

research, we know that it is possible to obtain more precise

weights by the fitness distance correlation metric [53][54].

Because the simple parameters still performed well enough,

we continued to use them and to leave the fitness distance

correlation metric as a future work. We set 1 as the seed of

the random number generator. This will make our

experiment repeatable.

4.2. Repair Results

Table 5 shows the repair time in the IntroClass benchmark,

and Table 6 is the repair time in the ITSP benchmark. We

selected 10 subject files from 587 files in the IntroClass

database and we selected 4 subject files from 1395 files in

the ITSP dataset. We compared the execution time between

AE [52], GenProg, and our method. The common parameters

of the genetic programming in all program repair systems

were the same, such as pop_size, pos_weight, and

neg_weight. It should be noticed that the following

comparisons are based on such a situation that a particular

program repaired by our method is able to pass the same

number of test cases as other methods. The result presents

that our method has less execution time than GenProg in

most of the subject files.

Besides, our method has less execution time than AE when

it doesn’t consider the 10th subject file in Table , which is

unable to be repaired by AE. The improvement is not

significant to the files whose execution time is little, because

the overhead of utilizing the deep learning model to predict

a fault may exceed the saving of testing time. However, the

improvement is more significant to the files whose execution

time is long. For example, our method took 144.231 seconds

in the 10th file in Table 5. It reduces a 70% execution time

compared to the traditional method. In the 1st subject file of

Table 6, our method took 54.9693 seconds to repair the bugs.

It reduces 24% repair time compared to GenProg and 50%

repair time compared to AE, respectively. It should be noted

that we used the same parameters of genetic programming

for AE, GenProg, and our method, so we couldn’t guarantee

all program repair systems had their optimized performance.

That may be the reason why AE failed to repair some subject

files.

Table 5. Repair time of each repair systems in the

IntroClass Benchmark
Subject files GenProg (s) AE (s) Our method (s)

1 6.88042 5.45556 6.35275

2 6.05169 5.66346 2.31514

3 15.1142 19.8711 11.7605

4 17.9337 13.1493 8.36506

5 27.523 12.7939 15.9251

6 7.40185 2.36285 2.42728

7 7.65303 3.74622 3.22963

8 1.74478 2.54894 2.28522

9 27.0875 12.7178 16.0086

10 480.604 ends 144.231

Total 597.9942 78.30913 212.9003

Average 59.79942 8.701014 21.29003

Table 6. Repair time of each repair systems in the ITSP

Benchmark

Subject files GenProg (s) AE (s) Our method (s)
1 72.4508 109.392 54.9693

2 24.3634 fail 18.3466

3 3.99539 4.30927 5.26607

4 20.4068 1.89187 9.76669

Total 121.2164 115.5931 88.34866

Average 30.3041 38.53105 22.08717

Table 7 is the average CPU usage of 10 subject files in the

IntroClass benchmark. According to this table, it is clear that

our method has a less average CPU usage than both GenProg

and AE do. For example, our method reduces 22% average

CPU usage compared to both GenProg and AE for the first

subject file. On average, our method reduces 12% average

CPU usage compared to GenProg, and it reduces 11%

average CPU usage compared to AE for 10 subject files,

respectively. This result indicates that our method is able to

reduce hardware resource cost in repair compared to

GenProg and AE because of a lower average CPU usage.

Table 8 is the average CPU usage of 4 subject files in the

ITSP benchmark. According to this table, it is clear that our

method has less average CPU usage than both GenProg and

AE do. For example, our method reduces 31% average CPU

450

usage compared to GenProg and 40% average CPU usage

compared to AE for 2nd subject file. On average, our method

reduces 21% average CPU usage compared to GenProg, and

it reduces 23% average CPU usage compard to AE for 4

subject files, respectively. This result indicates that our

method is able to reduce hardware resource cost in repair

compared to both GenProg and AE because of a lower

average CPU usage.

Table 7. Average CPU usage of IntroClass Benchmark

Table 8. Average CPU usage of ITSP Benchmark
Subject files GenProg (%) AE (%) Our method (%)

1 98.3896 98.5263 94.3996

2 76.6799 89.1263 53.2712

3 94.2807 97.0273 63.1775

4 99.1853 95.0414 79.9593

Average 92.133875 94.930325 72.7019

4.3. Sensitivity Analysis

In this section, we conducted sensitivity analysis to our

method in order to study the effect of the principal

parameters, such as pop_size, pos_weight, and neg_weight.
We noticed that the parameters of genetic programming do

affect the repair time and repair result. Therefore, we have to

evaluate these parameters for some subject files to observe

the performance of our method. Although we did not analyze

all parameters, this section helps us to estimate the optimal

parameters to achieve the best performance of a particular

subject file [55]-[57]. In this study, we define

Relative Change () = (1)

where ORT is the original repair time, and MRT is the

modified repair time [58].

 Effect of variations on pop_size
In Section 4.2, we have obtained the original repair time for

several subject programs. In this paragraph, we present the

modified repair time concerning the change of pop_size. We

selected 3 subject files from the IntroClass benchmark, and

we modified the value of pop_size by increasing or

decreasing 40%, 30%, 20%, or 10%. For other genetic

programming parameters, we kept the same value described

in Section 4.1. Table 9 shows some numerical values of the

modified repair time for the cases of 40%, 30%, 20%, and a

10% increase to pop_size. In the situation of increasing

pop_size, our method’s RC ranges from -0.056 to 0.14, and

GenProg’s RC ranges from -0.079 to 0.071. Table 10 shows

some numerical values of the modified repair time for the

cases of 40%, 30%, 20%, and a 10% decrease to pop_size. In

the situation of decreasing pop_size, our method’s RC ranges

from -0.203 to 5.824, and GenProg’s RC ranges from -0.418

to 20.541. The result indicates that the effect of pop_size is

different for each subject file. For example, the MRT of

subject program 2 in Table 10 is unstable, and RC is up to

20.541. However, the MRT of subject programs 1 and 3

remain steady, no matter whether pop_size is increasing or

decreasing. It seems that there is no global optimal value of

pop_size for multiple files. On the other hand, these tables

show that our method has less MRT than GenProg has in

most of the cases whether pop_size is increasing or

decreasing.

Table 9. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% increase in pop_size
 pop_size × 1.4 pop_size × 1.3 pop_size × 1.2 pop_size × 1.1
Subject

File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP

1 7.0242 6.8109 7.0993 6.558 7.3657 7.2684 6.6386 6.1801

2 14.0957 11.4858 13.9267 12.0661 13.989 11.4309 14.4476 11.1637

3 18.2919 8.1408 17.9898 7.898 18.2461 7.9493 18.0489 8.1801

Table 10. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% decrease in pop_size
 pop_size × 0.6 pop_size × 0.7 pop_size × 0.8 pop_size × 0.9

Subject
File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP

1 7.2917 6.724 7.3212 6.2833 6.9382 6.6565 6.5636 6.5678

2 148.696 27.2938 15.7623 11.1674 23.5298 45.9627 583.425 95.6477

3 17.9612 fail 18.0112 8.72 18.0211 7.9451 17.9451 7.9232

 Effect of variations on pos_weight and neg_weight
In this paragraph, we present the modified repair time

analysis with regards to changes in pos_weight and

neg_weight. We conducted experiments on 3 subject files

from the IntroClass benchmark, modifying the values of

pos_weight and neg_weight by increasing or decreasing

them by 40%, 30%, 20%, or 10%. Other genetic

programming parameters were kept unchanged as described

in Section 4.1. Table 11 displays the numerical values of the

modified repair time for the cases of a 40%, 30%, 20%, and

10% increase in pos_weight. When pos_weight is increased,

our method's RC ranges from -0.083 to 0.124, while

Subject files GenProg (%) AE (%) Our method (%)
1 98.9911 98.6245 77.4131

2 98.8127 92.0419 86.8776

3 99.1214 98.7623 88.9947

4 99.643 98.9343 87.3346

5 98.9667 99.0151 88.592

6 98.2941 97.5107 79.8431

7 99.2769 97.8204 89.0364

8 97.4571 97.5871 91.3175

9 98.8774 98.9552 89.2382

10 99.8371 98.7902 96.0511

Average 98.92775 97.80417 87.46983

451

GenProg's RC ranges from -0.111 to 0.09. Table 12 presents

the numerical values of the modified repair time for the cases

of a 40%, 30%, 20%, and 10% decrease in pos_weight. When

pos_weight is decreased, our method's RC ranges from -0.07

to 2.911, while GenProg's RC ranges from -0.417 to 0.099.

Table 13 shows the numerical values of the modified repair

time for the cases of a 40%, 30%, 20%, and 10% increase in

neg_weight. When neg_weight is increased, our method's RC

ranges from -0.089 to 3.06, while GenProg's RC ranges from

-0.378 to 0.234. Table 14 displays the numerical values of

the modified repair time for the cases of a 40%, 30%, 20%,

and 10% decrease in neg_weight. When neg_weight is

decreased, our method's RC ranges from -0.894 to 0.276,

while GenProg's RC ranges from -0.903 to 0.087. The results

indicate that the effect of pos_weight and neg_weight varies

across different subject files. For instance, the range of MRT

for subject program 2 in Table 12 is higher than for other

subject files, with RC reaching up to 2.911. However, the

range of MRT for subject files 1 and 3 remains stable

regardless of whether pos_weight is increased or decreased.

It appears that there are no global optimal values of

pos_weight and neg_weight for multiple files. Additionally,

these tables demonstrate that our method consistently has

lower MRT compared to GenProg in most cases, regardless

of whether pos_weight and neg_weight are increased or

decreased.

Table 11. Repair time in seconds of GenProg and DLBGP for the Case of 40%, 30%, 20%, and a 10% increase in pos_weight
 pos_weight × 1.4 pos_weight × 1.3 pos_weight × 1.2 pos_weight × 1.1

Subject
File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP

1 7.3216 7.1223 6.9628 7.1301 7.0945 6.9621 7.4979 7.038

2 26.5344 13.8479 25.3756 13.7507 24.0897 14.8573 24.8189 12.8564

3 17.7299 9.4065 17.7668 9.1841 18.0882 8.6125 18.3667 8.1535

Table 12. Repair time in seconds of GenProg and DLBGP for the Case of 40%, 30%, 20%, and a 10% decrease in pos_weight
 pos_weight × 0.6 pos_weight × 0.7 pos_weight × 0.8 pos_weight × 0.9
Subject

File GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP

1 7.0274 6.7494 7.5598 6.5084 7.3458 6.9846 6.9099 6.9944

2 15.7959 54.8165 16.8985 20.2647 17.3614 13.3629 24.5035 13.0390

3 18.2164 8.6375 18.2140 7.8163 18.0758 8.1645 18.1200 7.9047

TABLE 13. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% increase in

neg_weight
 neg_weight × 1.4 neg_weight × 1.3 neg_weight × 1.2 neg_weight × 1.1
Subject
Program GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP

1 8.4892 6.4053 8.3420 6.7461 7.8897 6.5830 7.2879 6.7048

2 17.0780 56.9087 16.8517 14.2788 24.5157 13.0488 24.8748 12.7664

3 17.9951 8.1328 18.0670 9.2514 17.9058 8.6669 18.2277 8.4560

Table 14. Repair time in seconds of GenProg and DLBGP for the case of 40%, 30%, 20%, and a 10% decrease in neg_weight
 neg_weight × 0.6 neg_weight × 0.7 neg_weight × 0.8 neg_weight × 0.9
Subject
Program GenProg DLBGP GenProg DLBGP GenProg DLBGP GenProg DLBGP

1 6.7492 6.2987 7.4819 6.3881 6.7959 6.2755 6.8023 6.9360

2 2.6342 1.4819 24.6171 13.0545 24.1398 13.3283 24.3401 12.8233

3 17.9115 9.5296 17.8956 10.6740 17.8754 9.8434 18.0636 10.4919

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce DLBGP, a novel APR technology

that integrates GenProg, deep learning, and genetic

programming. Our approach generates repaired programs

progressively while preserving necessary functions and

mitigating specific program errors. To address the challenge

of a large search space in genetic programming, we employ

various techniques, including limited attention to statements,

focusing on genetic operations on weighted paths based on

test case coverage, and leveraging repeat usage of existing

program statements. To predict faults, we utilize a

representation-learning methodology to extract semantic

features from the source code. Specifically, we employ the

Deep Brief Network (DBN) to automatically learn semantic

features from node vectors extracted from the program's

Abstract Syntax Tree (AST). In our experiments, our method

significantly reduced execution time by 64% compared to

traditional methods among the 10 subject programs. In

modern software development environments, where

understanding entire software packages and lacking

sufficient test cases and time for verifying target programs

can be challenging for software engineers, DLBGP can serve

as a valuable tool for debugging and fixing software program

errors, eliminating the need for spending days on repairs or

resorting to risky temporary solutions. Although we did not

452

evaluate the performance of our method on larger defective

programs due to limited resources and the scale of our deep

learning model, we leave this as future work. Moving

forward, we plan to explore different types of deep learning

models to assess their effectiveness in APR.

ACKNOWLEDGMENT

The work described in this paper was supported by Ministry

of Science and Technology, Taiwan, under Grants MOST

108-2221-E-007-033-MY3 and MOST 110-2221-E-007-

035-MY3.

REFERENCE

[1] E. Barnett, “Gmail outage affected majority of users, says Google,”
Telegraph Media Group, [Online].Available: https://www.telegraph.
co.uk/technology/google/6125689/Gmail-outage-affected-majority-
of-users-says-Google.html. Accessed: 3 May 2019.

[2] W. Leonhard, “Hotmail fail: Microsoft lays an egg in the cloud,” IDG
Communications,[Online].Available:https://www.infoworld.com/artic
le/2624887/saas/hotmail-fail--microsoft-lays-an-egg-in-the-loud.html.
Accessed: 3 May 2019.

[3] D. Perry, “Microsoft and Amazon Cloud Services Struck by
Lightning,”
Tom'sGuide,[Online].Available:https://www.tomsguide.com/us/amaz
on-ec2-microsoft-cloud-services-outage,news-12108.html.Accessed:
3 May 2019.

[4] B. Abdallah, Y. Benyssaad, D. Mohamed, B. Benaissa, and Y.
Benabdellah, “Maintenance Optimization for Complex System using
Evolutionary Algorithms under Reliability Constraints within the
Context of the Reliability-Centered-Maintenance.” International
Journal of Performability Engineering, vol. 17, no. 1, pp. 1-13, January
2021.

[5] R. C. Scacord, D. Plakosh and G. A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business
Practices., Boston, USA: Addison-Wesley Professional, 2003.

[6] M. Jorgensen and M. Shepperd, “A Systematic Review of Software
Development Cost Estimation Studies,” IEEE Trans. on Software
Engineering, Vol. 33, No. 1, pp. 33-53, Jan. 2007.

[7] J. Sutherland, “The Object Technology Architecture: Business Objects
for Corporate Information Systems,” in Business Object Design and
Implementation, London, 1997.

[8] Z. Yu, M. Martinez, B. Danglot, T. Durieux and M. Monperrus, “Test
Case Generation for Program Repair: A Study of Feasibility and
Effectiveness,” 2017, https://arxiv.org/pdf/1703.00198.pdf.

[9] C. L. Geoues, T. Nguyen, S. Forrest and W. Weimer, “GenProg: A
Generic Method for Automatic Software Repair,” IEEE Trans. on
Software Engineering, Vol. 38, No. 1, pp. 54-72, 2012.

[10] M. Mossige, A. Gotlieb and H. Meling, “Using CP in Automatic Test
Generation for ABB Robotics’ Paint Control System,” in Principles
and Practice of Constraint Programming, Lyon, France, Springer,
Cham, pp. 25-41 2014.

[11] A. Gotlieb and D. Marijan, “FLOWER: optimal test suite reduction as
a network maximum flow,” Proceedings of the 2014 International
Symposium on Software Testing and Analysis (ISSTA), San Jose, CA,
USA, pp.171-180, 2014.

[12] S. Wang, S. Ali and A. Gotlieb, “Cost-effective test suite minimization
in product lines using search techniques,” Journal of Systems and
Software, Vol. 103, No. C, pp. 370-391, 2015.

[13] A. Gotlieb, M. Carlsson, D. Marijan and A. Petillon, “A New Approach
to Feature-based Test Suite Reduction in Software Product Line
Testing,” Proceedings of the 11th International Conference on
Software Engineering and Applications (ICSOFT-EA), Lisbon,
Portugal, pp.48-58, 2016.

[14] H. Spieker, A. Gotlieb, D. Marijan and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in
continuous integration,” Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
Santa Barbara, CA, USA, pp.12-22, 2017.

[15] D. Marijan, M. Liaaen, A. Gotlieb, S. Sen and C. Leva, “TITAN: Test
Suite Optimization for Highly Configurable Software,” Proceedings of
the 10th IEEE International Conference on Software Testing,
Verification and Validation (ICST), Tokyo, Japan, pp.524-531, 2017.

[16] M. Mossige, A. Gotlieb, H. Spieker, H. Meling and M. Carlsson,
“Time-aware Test Case Execution Scheduling for Cyber-Physical
Systems,” Proceedings of the 23rd International Conference on
Principles and Practice of Constraint Programming, Melbourne,
Australia, 2017.

[17] C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S.
Forrest and W. Weimer, “The ManyBugs and IntroClass Benchmarks
for Automated Repair of C Programs,” IEEE Trans. on Software
Engineering, Vol. 41, No. 12, pp. 1236-1256, 2015.

[18] H. D. T. Nguyen, D. Qi, A. Roychoudhury and S. Chandra, “SemFix:
Program repair via semantic analysis,” Proceedings of the 35th
International Conference on Software Engineering (ICSE), San
Francisco, CA, USA, pp.772-781, 2013.

[19] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote, T.
Durieux, D. L. Berre and M. Monperrus, "Nopol: Automatic Repair of
Conditional Statement Bugs in Java Programs," IEEE Trans. on
Software Engineering, Vol. 43, No. 1, pp. 34-55, 2017.

[20] S. Mechtaev, J. Yi and A. Roychoudhury, “DirectFix: Looking for
Simple Program Repairs,” Proceedings of the 37th IEEE International
Conference on Software Engineering (ICSE), Florence, Italy, 2015.

[21] S. Mechtaev, J. Yi and A. Roychoudhury, “Angelix: Scalable Multiline
Program Patch Synthesis via Symbolic Analysis,” Proceedings of the
38th International Conference on Software Engineering (ICSE),
Austin, TX, USA, pp.691-701, 2016.

[22] W. Weimer, T. Nguyen, C. L. Goues and S. Forrest, “Automatically
finding patches using genetic programming,” Proceedings of the 31st
International Conference on Software Engineering(ICSE), Vancouver,
BC, Canada, pp.364-374, 2009.

[23] M. Gabel and Z. Su, “A study of the uniqueness of source code,”
Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering (FSE'10), Santa
Fe, New Mexico, USA, pp.147-156, 2010.

[24] A. Hindle, E. T. Barr, Z. Su, M. Gabel and P. Devanbu, “On the
naturalness of software,” Proceedings of the 34th International
Conference on Software Engineering (ICSE), Zurich, Switzerland,
pp.837-847, 2012.

[25] E. T. Barr, Y. Brun, P. Devanbu, M. Harman and F. Sarro, “The plastic
surgery hypothesis,” Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE), Hong Kong, China, pp.306-317, 2014.

[26] X. Kong, L. Zhang, W.E. Wong. and B. Li, “Experience report: How
do techniques, programs, and tests impact automated program repair?,
” 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE), pp. 194-204, Nov. 2015.

[27] Y. Qi, X. Mao, Y. Lei and C. Wang, “Using automated program repair
for evaluating the effectiveness of fault localization techniques,”
Proceedings of the 2013 International Symposium on Software Testing
and Analysis (ISSTA), Lugano, Switzerland, pp.191-201, 2013.

[28] H. Yokoyama, Y. Higo, K. Hotta, T. Ohta, K. Okano and S. Kusumoto,
“Toward improving ability to repair bugs automatically: a patch
candidate location mechanism using code similarity,” Proceedings of
the 31st Annual ACM Symposium on Applied Computing (SAC'16),
Pisa, Italy, pp.1364-1370, 2016.

[29] M. Martinez and M. Monperrus, “ASTOR: a program repair library for
Java (demo),” Proceedings of the 25th International Symposium on
Software Testing and Analysis (ISSTA), Saarbrücken, Germany,
pp.441-444, 2016.

453

[30] D. Kim, J. Nam, J. Song and S. Kim, “Automatic patch generation
learned from human-written patches,” Proceedings of the 35th
International Conference on Software Engineering (ICSE), San
Francisco, CA, USA, pp.802-811, 2013.

[31] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2015), Bergamo, Italy, pp.166-
178, 2015.

[32] C. T. Lin and C. Y. Huang, “Staffing Level Analysis of Software
Debugging through Rate-Based Simulation Approaches,” IEEE Trans.
on Reliability, Vol. 58, No. 4, pp. 711-724, Dec. 2009.

[33] W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldonado, “Smart debugging
software architectural design in SDL,” Journal of Systems and
Software, vol. 76, no. 1, pp.15-28, Apr. 2005.

[34] Y. S. You, C. Y. Huang, K. L. Peng, and C. J. Hsu, “Evaluation and
Analysis of Spectrum-Based Fault Localization with Modified
Similarity Coefficients for Software Debugging,” Proceedings of the
37th Annual IEEE International Computer Software and Applications
Conference (COMPSAC 2013), Kyoto, Japan, pp. 180-189, July 2013.

[35] W. E. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, "A Survey on
Software Fault Localization," IEEE Trans. on Software Engineering,
vol. 42, no. 8, pp. 707-740, 1 Aug. 2016

[36] W. E. Wong and V. Debroy, "Software Fault Localization,"
Encyclopedia of Software Engineering, vol. 1, pp. 1147-56, Sep. 2010

[37] W. E. Wong and T. H. Tse, "Handbook of Software Fault Localization:
Foundations and Advances," Edition 1, Wiley-IEEE Computer Society
Press, May 2023

[38] A. Dutta, "Poster: EBFL-An Ensemble Classifier based Fault
Localization," 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), Valencia, Spain, pp. 473-
476 2022.

[39] Y. Li and P. Liu, "A Preliminary Investigation on the Performance of
SBFL Techniques and Distance Metrics in Parallel Fault Localization,"
IEEE Trans. on Reliability, vol. 71, no. 2, pp. 803-817, June 2022.

[40] C. H. Lee, C. Y. Huang, and T. Y. Lin, "A Study of Applying Fault-
Based Genetic-Like Programming Approaches to Automatic Software
Fault Corrections," International Journal of Performability
Engineering, Vol. 14, No. 9, pp. 2090-2104, Sept. 2018.

[41] B. L. Miller and D. E. Goldberg, “Genetic Algorithms, Selection
Schemes, and the Varying Effects of Noise,” Evolutionary
Computation, Vol. 4, No. 2, pp. 113-131, 1996.

[42] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
Heidelberg: Springer, 2003.

[43] H. Peng, L. Mou and G. Li, “Building Program Vector Representations
for Deep Learning,” in International Conference on Knowledge
Science, Engineering and Management (KSEM 2015), Chongqing,
China, pp.547-553, 2015.

[44] W. Weimer, T. Nguyen, C. L. Goues and S. Forrest, “Automatically
finding patches using genetic programming,” Proceedings of the 31st
International Conference on Software Engineering(ICSE), Vancouver,
BC, Canada, pp.364-374, 2009.

[45] G. E. Hinton, S. Osindero and Y.-W. Teh, “A Fast Learning Algorithm
for Deep Belief Nets,” Neural Computation, Vol. 18, No. 7, pp. 1527-
1554, 2006.

[46] G. C. Necula, S. McPeak, S. P. Rahul and W. Weimer, “CIL:
Intermediate Language and Tools for Analysis and Transformation of
C Programs,” Proceedings of the 11th International Conference on
Compiler Construction (CC'02), Grenoble, France, pp.213-228, 2002.

[47] S. Wang, T. Liu and L. Tan, “Automatically Learning Semantic
Features for Defect Prediction,” Proceedings of the 38th International
Conference on Software Engineering (ICSE), Austin, TX, USA,
pp.297-308, 2016.

[48] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the
ACM, Vol. 60, No. 6, pp. 84-90, 2017.

[49] M. Chhabra, M.K. Shukla. and K.K. Ravulakollu, “Intelligent
Optimization of Latent Fingerprint Image Segmentation using Stacked

Convolutional Autoencoder ” International Journal of Performability
Engineering. vol. 17, no. 4, April 2021.

[50] J. Li, P. He, J. Zhu and M. R. Lyu, “Software Defect Prediction via
Convolutional Neural Network,” Proceedings of the International
Conference on Software Quality, Reliability and Security (QRS),
Prague, Czech Republic, pp. 318-328, 2017.

[51] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan and A. Roychoudhury, “A
feasibility study of using automated program repair for introductory
programming assignments,” Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017),
Paderborn, Germany, pp.740-751, 2017.

[52] W. Weimer, Z. P. Fry and S. Forrest, "Leveraging program equivalence
for adaptive program repair: models and first results," Proceedings of
the 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE'13), Silicon Valley, CA, USA, pp.356-366, 2013.

[53] E. Fast, C. L. Goues, S. Forrest and W. Weimer, "Designing better
fitness functions for automated program repair," Proceedings of the
12th annual conference on Genetic and evolutionary computation
(GECCO '10), Portland, Oregon, USA, pp.965-972, 2010.

[54] T. Jones and S. Forrest, "Fitness Distance Correlation as a Measure of
Problem Difficulty for Genetic Algorithms," Proceedings of the 6th
International Conference on Genetic Algorithms, San Francisco, CA,
USA, pp.184-192,1995.

[55] S. S. Gokhale and K. S. Trivedi, "Reliability prediction and sensitivity
analysis based on software architecture," Proceedings of the 13th
International Symposium on Software Reliability Engineering (ISSRE
2002), Annapolis, MD, USA, pp.1-12, 2002.

[56] A. Pasquini, A. N. Crespo and P. Matrella, "Sensitivity of reliability-
growth models to operational profile errors vs. testing accuracy," IEEE
Trans. on Reliability, Vol. 45, No. 4, pp. 531-540, 1996.

[57] C. Y. Huang, J. H. Lo, J. W. Lin, C. C. Sue and C. T. Lin, "Optimal
resource allocation and sensitivity analysis for modular software
testing," in Proceedings of the IEEE Fifth International Symposium on
Multimedia Software Engineering, Taichung, Taiwan, 2003.

[58] C. Y. Huang and M. R. Lyu, "Optimal Testing Resource Allocation,
and Sensitivity Analysis in Software Development," IEEE Trans. on
Reliability, Vol. 54, No. 4, pp. 592-603, 2005.

454

