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Abstract—The security of critical infrastructures is a challenge

facing nations and states today as a result of the increased

complexity and interconnectivity of these systems and their

control from remote locations. Ensuring the security of critical

systems requires engineering cybersecurity-related risks that

attackers can exploit to cause severe consequences, such as

equipment damage, environmental/water pollution, monetary

loss, or even loss of life. It is important to identify and

prioritize actions or attacks that can lead to high-consequence

events (HCEs) capable of crippling critical functions of any

organization. In this work, we proposed a new approach to

cybersecurity risk assessment by proposing the Consequence-

Driven Cyber-Informed Engineering (CCE) approach and the

Bayesian Belief Network (BBN) with Sensitivity Analysis

(SA). For proof of concept, we tested the proposed approach

at the Tennessee Eastman chemical plant and were able to

uncover and prioritize ripple effects caused by disturbance or

noise-induced attacks on critical infrastructure.

Keywords–Critical infrastructures security; cyber-informed
engineering; cybersecurity risk assessment; Bayesian belief
network; Sensitivity analysis; High-consequence events

1. INTRODUCTION

In order to ensure the security of critical infrastructures, it is

important to consider the operating technology environment
1 (OT) and its complexity and interconnectivity. Initially,

critical infrastructures were built to be controlled on site,

but today these systems are managed and controlled from

remote locations, exposing them to cyberattacks. To ensure

the protection of critical assets, it is critical to analyze and

understand cybersecurity-related risks and threats and their

impact on processes and systems. Cyber threats are increasing,

and attackers are equipped with sophisticated cybersecurity

tools and resources to bypass security mechanisms and cause

cyber sabotage. Unfortunately, most organizations assume that

their systems and industrial software packages are mostly

protected, and they are hesitant to allocate proper budget and

resources to embrace the necessary cybersecurity practices that

address today’s security challenges. However, it is not feasible

to eliminate all possible cyber risks associated with critical

1Operation Technology(OT) describes hardware and software systems em-
ployed to manage, monitor, and control industrial equipment and operations.

infrastructure, and it is important to identify actions or attacks

that can lead to high-consequence events (HCE).

In information technology (IT), HCEs are events that affect

critical functions of an organization by crippling its day-

to-day business operations [1]. In critical systems, HCEs

impact critical infrastructures such as power, energy, nuclear,

or water treatment plants, leading to equipment/plant damage

or shutdown, environmental pollution, monetary loss, injuries,

or even death. HCEs represent events that have the most

severe impact on the system. According to the China State

Administration of Work Safety accident record, more than 125

chemical plant safety accidents occurred in China between

2006 and 2015, resulting in the deaths of 524 people and 438

injured [2]. The effects of HCE are overwhelmingly disastrous

and should not be allowed to occur.

Several tools and approaches have been developed for cyber

risk analysis and prevention [3], [4]. Examples of the most

popular techniques are fault tree analysis (FTA) to analyze

system-level failures [5], attack trees for threats or cyber risk

modeling [6], NIST Cyber Security Framework to manage

cybersecurity risks within critical infrastructure [7] and many

others. However, these techniques help uncover the vulnerabil-

ities and threats found within the system, but lack the ability

to find HCEs during the early stages of system design and

development. Finding HCE early in critical infrastructure is

essential to prevent cybersecurity risks that threaten national

security. To this end, the cyber-informed consequence-driven

engineering approach (CCE) [8] is introduced to address this

weakness. The US Department of Energy (DOE) adopts the

CCE approach as an improved cyber risk assessment method

to counter cyber sabotage against the energy infrastructure [9].

CCE is a framework to promote the participation of cyberse-

curity engineering staff in understanding and mitigating high-

consequence cyber threats that continually evolve in critical

safety systems [10]. CCE is a top-down approach that focuses

mainly on finding HCE that affects critical infrastructure, how

a malicious actor can exploit the system to cause HCE, and

creating mitigation strategies.

Over the years, organizations have witnessed HCE caused by

phishing, ransomware, DDoS, spyware, SQL injection, DNS

attacks, or disturbance/noise-induced attacks. For example, in

2017, Russian hackers targeted the Wolf Creek nuclear power

plant in Burlington, Kansas, to learn the inner workings of

the plant relevant to launch a precise attack on the plant [11].

260

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/23/$31.00 ©2023 IEEE
DOI 10.1109/DSA59317.2023.00039



The attack on the California Water and Waste System (WWS)

facility that targeted the SCADA system in 2021 [12], and

a sophisticated cyberattack that targeted the industrial control

systems of a German Steel Mill blast furnace, causing the

furnace to shut down improperly, leading to massive damage

to the furnace [13].

In their research article, Ahmed, Zhou, and Mathur [14]

and Yadav, Kannan, and Mansor [15] highlight the fact that

disturbance- or noise-induced HCE remains an understud-

ied area in cyberphysical systems (CPS). In this study, we

propose an approach inspired by the work of Bochman [9]

and Freeman [8]. Bochman [9] and Freeman [8] adopt the

CCE approach to identify and prioritize HCE based on expert

knowledge. However, our proposed approach combines the

CCE approach and the Bayesian belief network (BBN) with

a sensitivity analysis (SA) to analyze, identify and prioritize

HCE caused by disturbance- or noise-induced attacks. Our

approach addresses the main weaknesses found in [9], [8],

[16] by eliminating a high dependence on human or expert

knowledge during HCE prioritization using BBN with SA

analysis to provide a measurable result and evaluations based

on system simulation data as described in Section 4. Our

approach is twofold; First, the analysis, identification, and

prioritization of HCEs are part of the consequence prior-

itization phase. Then, the analysis of security threats and

the demonstration of how cyber adversaries can cause the

identified HCEs against the target system are done under the

consequence-based targeting phase. At its core, our method-

ology focuses on uncovering the cascade effects caused by

a disruption in critical infrastructure. Furthermore, the BBN-

SA phase will describe the impact of the failure caused by

a certain disturbance, which will reveal how critical certain

components / processes are to the whole system. For proof of

concept, we tested our approach on the Tennessee Eastman

(TE) plant to analyze the impact of disturbances on the plant

during chemical production necessary for the identification

and prioritization of disturbance-induced HCE. On the basis

of the CCE-BBN result, we conducted an integrity attack on

the TE plant to cause disturbance-induced HCE to cripple

the plant’s critical processes and functions. Our CCE-BBN

approach will allow cybersecurity engineers and / or experts in

governments and industries to build enhanced protection and

mitigation mechanisms for safety-critical systems. However,

the implementation of protection and mitigation strategies is

beyond the scope of this work. To our knowledge, our work

is the first to integrate CCE and BBN with SA for cyberse-

curity risk assessment to analyze, identify, and prioritize HCE

induced by disturbance-related cyber attacks. The codes and

results of our work are found in the DSA-2023 git repository2.

The repository contains the C codes, Matlab files, and Python

script for our implementation. The remainder of this paper is

organized as follows. Section II discusses related work. Our

proposed methodology is presented in Section III. We apply

our methodology to the Tennessee Eastman Plant Process

2https://github.com/Chidi93/DSA-2023.git

in Section IV, where we identified possible attack scenarios

and performed an integrity attack in C to demonstrate how

a malicious actor can cause HCE in real-world plants. The

conclusions and future work are discussed in Section V.

2. RELATED WORK

Several cybersecurity risk assessment methodologies and

threat modeling tools have evolved over the years. Bottom-

up cyber-risk approaches, such as failure modes and effects

analysis (FMEA), failure modes, vulnerabilities, and effects

analysis (FMVEA), and failure modes, effects, and criticality

analysis (FMECA), are good at identifying and classifying

system-level risks. Subriadi and Najwa [17] expanded the

FMEA to include the assessment of IT risk. They explored

the difficulties in finding the root causes of potential risks

using traditional FMEA, thus proposing the use of an improved

FMEA. As identified in [18], both FMEA and FMVEA cannot

identify complex attack modes. Hyder and Govindarasu [19]

proposed the use of attack defense trees and game theory for

the analysis of cyber attack paths in smart grids and possible

mitigation strategies. Agbo and Mehrpouyan [20] proposed an

STPA-SafeSec-CDCL approach that combines System Theo-

retic Process Analysis for Safety and Security (STPA-SafeSec)

and Conflict-Driven Clause Learning (CDCL) technique for

the analysis and resolution of safety and security conflicts.

Turner, Wheeler, and Gibson [21] proposed the cyber-hazard

analysis risk method (CHARM) for nuclear power plants that

use STPA to create cyber-informed fault trees. One of the

major challenges of attack or fault trees is that the leaves of

the tree can grow exponentially, leading to error-prone results.

Alanen et al. [22] conducted a review of cybersecurity risk

analysis methods and tools for safety-critical industrial control

systems such as Security Threat Analysis (STA) for instrumen-

tation and control cybersecurity risk assessments [23], Cyber

Process Hazard Analysis (Cyber PHA) for industrial process

automation risk assessment [24], Event Tree Analysis (ETA) to

trace events that lead to accidents. Singh, Kumar and Pusti [25]

proposed an ETA for the analysis of the consequences of the

most hazardous events in electrical energy storage systems, but

their work did not provide an accurate probabilistic estimate

of the results based on real-time failure. In ETA, all events

are independent and the analysis is limited to one initiating

event, making it difficult for cases where many events occur

in combination to cause HCE. Our proposed methodology

addresses these weaknesses by taking into consideration cases

where different initiating events, actions, or attacks can cause

HCE using a Bayesian belief network (BBN) with sensitivity

analysis (SA) to handle such probabilistic modeling.

Although there are some approaches for cybersecurity risk

assessment based on probabilistic modeling such as (Cyber-

SAGE) [26], the Cyber Security Modeling Language (Cy-

SeMoL) [27], and the Adversary View Security Evaluation

(ADVISE) [28] and their limitations have been identified

in [29], [30], [31] such as state space explosion, the po-

tential for attack graphs or workflows to grow significantly

in complexity, rendering them impractical for use in certain
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scenarios, etc. The limitations mentioned above are effectively

mitigated through the use of Bayesian belief networks (BBN)

in conjunction with Sensitivity Analysis (SA) as a means of

constructing feasible models for complex systems [32], [33].

The CPS Security Framework (FAST-CPS) [34] only models

the system to identify vulnerabilities, and as a result, no attack

goals or threats are described or modeled. Furthermore, to

our knowledge, there is no existing work on probabilistic

modeling of disturbance-induced HCE against safety-critical

systems based on CCE with BBN and SA models.

BBN and SA have been used in the risk analysis of industrial

and chemical plants or power grids. According to Kabir, Balek,

and Tesfamariam [35], BBN is a probabilistic graphical net-

work that represents the main cause-and-effect relationships in

the system. The authors proposed a consequence-based model

to prioritize buried infrastructure based on health and safety,

environmental, social, economic, and organizational impacts

using BBN. Zerrouki and Smadi [36] proposed the use of BBN

in the chemical and process industry to assess the risk of events

that can affect the safety of processes, humans, and the envi-

ronment. ”One of the major advantages of BBN is the ability

to model dependencies between variables, manage nonlinear

interaction, such as low probability (and high consequence)

events, and integrate different kinds of information about the

system such as measurement data, feedback experience, and

information regarding the system behavior” [37]. Brutica and

Tesfamariam proposed the application of BBN and SA for the

probabilistic analysis of HCE in electric power systems [38].

They expand their approach to Canadian power systems. BBN

and SA have also been used to model the risk of chemical plant

explosion accidents [39].

However, the consequence-driven cyber-informed engineering

approach (CCE) is an improved cybersecurity risk assessment

method that has been applied to identify, prioritize, and

mitigate HCEs. Bochman and Freeman in their work applied

the CCE approach to counter cyber sabotage [9]. Freeman [16]

adopted the CCE approach in which the author proposed an

HCE severity score calculated using the equation:

HCE Severity Score = α(Area Impacted) + β(Duration) +

γ(Attack Breadth) + δ(System Integrity) + ε(Safety) + ζ(Cost)

where α, β, γ, δ, ε, and ζ are weighting coefficient values

determined by domain experts. The main challenge with the

proposed approach to prioritize HCE [16] is that domain

experts can make errors in severity scoring due to incomplete

or imperfect data in the target system. The authors proposed

going back and forth to adjust the severity score when more

information or data is obtained. To address this weakness,

we proposed the use of a Bayesian belief network (BBN)

with a sensitivity analysis (SA) modeling approach that works

well in predicting probabilistic events even in areas with

sparse or incomplete data, thus reducing the dependency on

human or expert knowledge through probabilistic modeling.

Our approach also focuses on analyzing and identifying HCE

associated with critical assets of an organization and explores

actions or attack scenarios that can impact the system to cause

such HCE.

3. METHODOLOGY

In this work, we propose a CCE-BBN approach that integrates

a consequence-driven cyber-informed engineering approach

(CCE) [9] and the Bayesian Belief Network (BBN) with sen-

sitivity analysis (SA) [38] for the analysis, identification and

prioritization of HCEs capable of crippling critical national or

state infrastructures such as power / energy, nuclear or water

treatment plants, etc.

CCE is an enhanced methodology developed by Idaho Na-

tional Laboratory 3 (INL) that seeks to identify HCE with

worse-case functional impacts on critical infrastructure [9].

The CCE approach provides organizations with the important

phases needed to ensure the protection of assets that perform

the most critical functions. CCE also enables organizations to

adequately identify and calculate cybersecurity risks caused

by specific cyber adversaries and groups, and to develop

an understanding of the potential impact (both cyber and

physical) of a cyber event to provide improved security

within critical infrastructure [8]. On the other hand, BBN is

a graphical model that captures a probabilistic relationship

among a set of variables. Bayesian network modeling is an

artificial intelligence tool that is used to model uncertainty

in a domain or system [40]. BBN is a dependency graph

(directed acyclic graph) where nodes represent variables and

arcs (arrows) denote causal relationships among them. Models

the probabilistic occurrence of events given the uncertainty

in the system. An important feature of BBN modeling is

the identification of critical variables, taking into account

other influencing factors. To this end, SA is used to validate

the BBN model by identifying the most critical parameters

that have a significant impact on the overall BBN result

when adjusted. In this work, we employ the capabilities of

our CCE-BBN approach for the analysis, identification, and

prioritization of HCE, identification of possible security threats

within the target system that an attacker can exploit to disrupt

critical assets that the organization relies on to function, and a

demonstration of how a malicious actor can paralyze the target

system to cause HCE.

Figure 1 shows our proposed framework, which is discussed

in detail in the next section.

Our proposed framework consists of two main phases. In phase

1 HCE analysis, identification and prioritization are performed

using the BBN and SA models. Security threats and how a

cyber adversary can exploit the system to cause the identified

HCEs are discussed in phase two.

3.1. Consequence Prioritization

The consequence prioritization phase is an essential phase of

the CCE-BBN approach based on the fact that the rest of

the phases depend on the result of this phase. During this

phase, worst-case scenarios, events, or attacks that can lead to

HCE are identified by defining the boundary conditions and

3Idaho National Lab (INL) is a US Lab leading a high-impact, national
security-level initiative to re-prioritize the way the nation looks at high-
consequence risk within the industrial control systems (ICS) environment of
the country’s most critical infrastructure and other national assets [8]
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Figure 1. Proposed Framework

severity criteria necessary to assess acceptable or unacceptable

risks. For HCE identification and prioritization, we proposed

the use of a Bayesian belief network (BBN) with a sensitivity

analysis (SA) approach to model the occurrence of events or

attacks and their effects on the target system. In this work, we

adopt the functional taxonomy of CCE proposed by [41] for

the identification of critical components and functions such

as the production of the entity or the business functions that

an adversary would have to disrupt to cause HCE, as seen in

Section 4. Next, we will discuss the concept of BBN and SA

in detail below;

a) Bayesian Belief Network (BBN) and Sensitivity Analysis
(SA): BBN and SA are essential modeling frameworks used

for risk-based analysis. The BBN network is based on the

Bayes theorem, which has been shown to be a coherent method

for managing uncertainty by explicitly representing conditional

probability dependencies (CPD) between variables [42]. Fur-

thermore, the BBN consists of two parts: a network graph for

qualitative analysis and a conditional probability table (CPT)

for quantitative analysis. The network graph also known as

the directed acyclic graph (DAG) represents the dependencies

among variables (often referred to as nodes), and the CPT

represents the conditional probabilities of a single node or

variable with respect to the others in a BBN network. A node

represents a random variable in a BBN model. Each node is

associated with a probability distribution that describes the

interdependencies between the node and its parents within

the network. The CPT is derived from one of the following:

(i) Expert knowledge, (ii) data, and (iii) a combination of

both. BBN can also be used to compute posterior probabilities

for a set of nodes given any set of evidence. To reduce the

overreliance on expert knowledge, our CPT is built on the

basis of system simulation data.

In addition, determining the sensitive nodes is essential for

BBN modeling, and, as a result, we apply the SA approach

to identify the sensitivity of each node towards the target

node4. SA measures how changes in input variables affect

the output variable of a BBN network. Identifying critical

input variables in a model is crucial for decision-making

4A target node in the BBN model represents a predicted node whose values
are determined based on the values of other nodes in the network

purposes. SA helps validate the BBN model by increasing

its correctness and reliability, as seen in section 4. SA has

been used in conjunction with BBN for consequence-based

analysis, medical diagnosis, predictions, and classifications.

The proposed BBN and SA approach is implemented using the

GeNIe Bayesian Modeler. The GeNIe modeler is an interactive

development environment to build graphical decision-theoretic

models or qualitative causal models of uncertain domains by

implementing SMILE (Structural Modeling, Inference, and

Learning Engine), a fully platform independent library of

functions for graphical probabilistic and decision-theoretic

models, such as Bayesian networks, influence diagrams, dy-

namic Bayesian networks, and structural equation models [43].

GeNIe implements a sensitivity analysis algorithm proposed

by Kjaerulff and van der Gaag [44] that efficiently and

effectively calculates a complete set of derivatives of posterior

probability distributions at the target nodes and at each of the

numerical parameters of the Bayesian network [43]. This set

of derivatives determines the magnitude of precision of the

network parameters to compute the posterior probabilities of

the target nodes. It implies that the larger the derivatives of

a parameter, the larger the change in the posteriors of the

targets, given a small change in that parameter, and vice versa.

GeNIe modeler has been used for probabilistic modeling in

[45], [46], [47] and many others. Furthermore, our analysis

is based on four cybersecurity risk factors, which include

Safety, Integrity, Availability, and Cost (SIAC), also known

as the SIAC criteria. The choice of our selected criteria is

based on the fact that the goal of cyber adversaries in critical

infrastructures is mainly to cause the impact of SIAC. It is

important to note that the impact on SIA can lead to equipment

damage or shutdown, environmental/water pollution, or even

death. In this work, we treat actions, events, or attacks that

have a high impact on the SIAC criteria as HCEs. For example,

if the introduction of disturbances/noise into the system has

a severe impact on the SIAC criteria, we treat it as an HCE.

Furthermore, the impact of events or attacks on these factors

is used to calculate the overall severity necessary to classify

HCEs. The four cybersecurity risk factors are explained in

detail as follows:

b) Safety: Safety is an essential property of any critical

system. Safety is freedom from conditions that can cause

death, injury, occupational illness, damage, loss of equipment,

or property [48]. Safety conditions are defined to ensure safe

operations of the system and deviations can be catastrophic.

Unfortunately, cyber adversaries target safety-critical systems

to cause safety violations. For example, Lanotte, Merro,

Munteanu, and Vigano [49] carried out a man-in-the-middle

(MITM) attack that can manipulate sensor readings or control

commands to drive a CPS into an unsafe state. In this work,

we treat actions, events, or attacks that can violate the system’s

safety conditions and drag the system into an undesired state

as an HCE.

c) Integrity: System integrity describes the protection of

system data and resources from unauthorized modifications.

The consequences of system integrity attacks on critical infras-
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tructures are disastrous and can lead to death. For example, the

attack on the Florida water treatment plant on 5 February 2021,

in which an unidentified hacker gained access to the SCADA

system and increased the amount of sodium from 100 parts per

million to 11,100 parts per million, to poison drinking water

[50]. System integrity-related risks refer to actions, events,

or attacks that can lead to modifications or manipulations of

system codes, control data, sensor values, process variables,

and levels to cause HCE.
d) Availability: System availability ensures that the system is

readily available for use when needed. Entails protecting the

system from actions or attacks that can lead to a shutdown.

For example, the BlackEnergy cyber attack on the Ukrainian

power grid that comprised the SCADA system and caused the

interruption of power supply to more than 225,000 customers

[51] and the DarkSide Russian hackers group that led to

the complete shutdown of all Colonial pipelines crippling

fuel deliveries to the East Coast of the United States [52].

The availability of the system is essential for the day-to-day

business operations of any organization. Risks associated with

availability include actions, events, or attacks that can impact

system availability, making the system unavailable for use.
e) Cost: Cost-related risks refer to actions, events, or attacks

with a financial impact on the system. It includes actions or

attacks that can lead to an increase in production cost, system

maintenance, and the cost of restoring confidence or trust in

the system after a successful attack.
We encode this reasoning in our BBN network starting with

the network graph as seen in Figure 2.

Figure 2. Network graph of our BBN model

The direct connection (arc) from Ak to SIAC shows the

causal effect between the nodes. This implies that SIAC is

conditionally dependent on Ak and marginally independent

given their child node R. The child node R is conditionally in-

dependent of its ancestor node Ak. The concept of conditional

independence is important for the compact computation of the

joint probability distribution (JPD) in a Bayesian network. It

states that a node is independent of its ancestors, given its

parents. For example, if the parent nodes of R (i.e. $, SIA

nodes) are known, the information about node Ak becomes

irrelevant to the prediction of the risk node R. It is imperative

to note that the attack node Ak represents a set of attacks

or events that can impact the system to cause HCE with Ak

ranging from Attack1, Attack2, . . . , Attackn or Event1,

Event2, . . . , Eventn. Furthermore, every node in a BBN has

CPD/CPT and can be calculated using the Bayes theorem.

Assuming that we want to calculate the impact on the integrity

of the system (I) given that an action, event, or attack A1 has

occurred, we can express the conditional probability based on

the Bayesian formula given thus:

P (I|A1) =
P (A1|I)P (I)

P (A1)
(1)

where P (A1) �= 0, P (I|A1) is an unknown probability

(posterior probability) interpreted as the probability of impact

on the integrity of the system given that an attack has occurred.

P (A1|I) represents the probability that an attack occurs and

its impact on the integrity of the system. P (I) and P (A1) are

the probabilities of observing I and A1, respectively. They are

also called prior probability. Equation 1 can be expressed as:

P (I|A1) =
P (A1|I)P (I)

P (A1|I)P (I) + P (A1|¬I)P (¬I) (2)

However, if two or more events or attacks impact the integrity

of the system, we can apply the equation 3 for this computa-

tion.

P (I|Ak) =
P (Ak|I)P (I)

P (Ak|I)P (I) + P (Ak|¬I)P (¬I) (3)

The JPD of all the nodes in the network graph can be computed

based on the conditional independence relationships using the

equation expressed thus:

P (Ak, $, S, I, A,R) = (4)

P (Ak)P ($|Ak)P (C|Ak)P (I|Ak)P (A|Ak)P (R|$, S, I, A)

Calculating the probability of the overall impact or risk (R)

given that an attack has occurred is given as:

P (R|Ak) =
∑

P (R, $̇, Ṡ, İ, Ȧ|Ak) =
∑

[P (R|$̇, Ṡ, İ, Ȧ)P ($̇|Ak)P (Ṡ|Ak)P (İ|Ak)P (Ȧ|Ak)] (5)

where $̇, Ṡ, İ , or Ȧ denotes the possible conditions of the

nodes. For example, $̇ means impact on cost = True (denoted

by $) and impact on cost = False (denoted by ¬$).

In BBN modeling, the qualitative part uses the CPT to specify

probabilistic relationships. For example, consider an attack

that has the following impact on a safety-critical system A, as

represented by the CPT shown in Figure 3. In this work, the

impact on safety, integrity, and availability (SIA) has higher

CPT values. The reason is that the violation of SIA in critical

infrastructures can lead to severe consequences, such as loss

of life. For example, an attack A1 directed at a water treatment
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plant that poisons drinking water distributed to homes by

increasing the number of chemicals beyond the acceptable

threshold can wipe out an entire community, or an attack that

shuts down a life-supporting medical device in use, leading

to the death of the patient. Furthermore, it is important to

note that the GeNIe modeler implements equations 2 and 5

given the CPT for each node. In our case, we used GeNIe to

calculate the overall impact given that an attack has occurred.

For example, the result shows that the attack has an impact of

93. 5% in system A (that is, risk R = 93. 5%).

Figure 3. Conditional Probability Table of attack A1 on System A

The robustness of the output probabilities of a BBN can be

determined by SA [53]. The GeNIe Modeler computes the

sensitivity of all possible parameters given a target node or a

set of target nodes. The SA algorithm implemented by GeNIe

computes a set of derivatives. These sets of derivatives are

based on the evidence set in the network and are essential

to measuring the precision of network numerical parameters

to calculate posterior probabilities of the target nodes. The

sensitivity of each node in the BBN network can be calculated

as the real values of the derivative and as a set of coefficients

using the equation 6. The set of coefficients defines the

dependency between the target posterior node and the specific

CPT parameter.

P =
(au+ b)

(cu+ d)2
(6)

Where P is the posterior target and a, b, c, d are coefficients

calculated by SMILE and u denotes the value of the specific

CPT parameter. The derivative D is calculated using the

following:

D =
(ad− bc)

(cu+ d)
(7)

With Equation 6, we can calculate how much the posterior

target will change when the CPT values (u) are modified. The

degree of change is defined by u1 = b/d, u2 = (a+b)/(c+d).
Note that ad-bc determines which value of u1 and u2 is lower

or greater. During sensitivity analysis, the GeNIe Modeler

differentiates sensitive nodes in a network from less sensitive

or nonsensitive nodes with colors. For example, gray for non-

sensitive nodes, ross or light red for low-sensitive nodes, and

red for high-sensitive nodes, as seen in Figure 4.

Figure 4. Sensitivity Analysis of attack A1 on System A

The SA analysis result shows that the safety, integrity and

availability nodes have a sensitivity of 90%, 99%, and 99%,

respectively, while the cost node has a sensitivity of 40%, with

their corresponding coefficients determined by SMILE. This

information is relevant during decision making, where limited

resources are directed toward mitigating attacks or actions that

can affect high-sensitivity nodes.

3.2. Consequence-based Targeting

The Consequence-based targeting phase enables domain ex-

perts to think like an attacker by exploring how a malicious

actor can disrupt the system to cause HCE. All weak points in

the system are analyzed, including all gateways, data centers,

network components, and people (workers and customers).

This phase can help identify the type of information or access

an attacker may need to execute his payload. Humans are the

weakest link in the security chain. An attacker can choose to

exploit people to carry out high-impact attacks. For example,

the Stuxnet attack launched to destroy Iranian centrifuges was

executed on a USB drive [54]. This phase involves a detailed

examination of all critical assets or components of the system

that may appear attractive to the attacker. The benefit of this

phase is that those who have a good understanding of the

system are looking for ways to attack the system to cause HCE

but with a defensive mindset. Bochman and Freeman [9] pro-

posed adversarial operations (CONOPS), while Lawrence [55]

proposed the use of the CCE kill chain5 for consequence-based

targeting analysis. We adopt the CCE kill chain approach in

our work to cause HCE, as seen in section 4.

4. CASE STUDY

The Tennessee Eastman (TE) plant process [56] is the

simulation of a real chemical process plant model developed

for the study of industrial control processes. The main reasons

for our choice of plant include (i) The TE plant is a widely

used plant process model for the study of CPS [57], [58]. (ii)

The plant comprises various components, levels and process

variables found in real-world chemical plants such as reactor,

compressor, stripper, condenser, separator, analyzers, sensors,

actuators (valves), feed components, pressure, temperature,

5The CCE kill chain helps illustrate the specific information requirements
the adversary needs to develop and deploy a payload to cause an HCE [55]
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etc. and (iii) The TE plant has been extensively used in the

study of CPS security and attack detection [59], [60], [61],

[62], [63], etc.

First, we apply the CCE functional taxonomy proposed by

[41] to identify critical functions of the TE plant by differ-

entiating the enabling functions (EF) and critical functions

(CFs). In critical infrastructure, enable functions are functions

that support the delivery of critical functions and services.

They include information technology, communications, safety,

security, procurement, regulatory compliance, etc. Critical

functions are functions whose disruption or failure would

have destructive effects on the system such as environmen-

tal/water poisoning, equipment abrasion, loss of property,

personal injury, or even loss of life. They include activities like

production, waste management, water treatment and supplies,

electricity generation and distribution, etc. In this work, we

present a high-level representation of the critical and enabling

functions of the TE plant with a focus on the critical functions

(production) part of the functional taxonomy of the CCE as

shown in Figure 5.

Figure 5. The TE Plant CCE Functional Taxonomy Mappings

with a high-level representation of EFs and CFs

The TE plant is used in the production of two liquid products,

G and H, one by-product, and one inert component, from

four chemical reactants (A, C, D, and E), as shown below.

Production takes place in the reactor, and as a result, we treat

the reactor unit as a critical component of the TE plant. The

flow of the chemical reactants (feeds) is controlled by the feed

valves (FI) to allow the correct amount of feeds to pass through

the reactor per hour during production.

A(g) +C(g) +D(g) → G(liq) ⇒ Product1 (i)

A(g)+C(g)+E(g) → H(liq) ⇒ Product2 (ii)

The reactor contains measurement sensors that monitor reactor

level, temperature, pressure, and other process variables. An-

alyzers measure the quality of the products being produced.

If the quality of the product is satisfied, the product is sent

through the discharge valve; otherwise, the product is recycled

back to the reactor for reprocessing. The by-products are

purged from the plant through the purge valve. Second, we

applied our CCE-BBN approach to the reactor unit during the

production of chemicals G and H to demonstrate how our

approach can be used in real-world chemical plants. HCE in

our study represents actions, events, or attacks that can impact

the SIAC criteria and lead to catastrophic consequences. It can

be through Denial of Service (DoS) attacks, integrity/code

injection attacks, man-in-the-middle (MITM), phishing, or

insider attacks, as discussed in section 4-A.

4.1. Simulation Setup

The TE chemical plant process model consists of 28 dis-

turbances that can be activated during chemical production.

However, the TE control system, as described by Downs

and Vogel [56], ensures the following control objectives (i)

maintaining the process variables within the desired values. (ii)

ensure that the processes operate within equipment constraints.

(iii) reduce variations in product rate and process variables

during disturbances, (iv) reduce valve movement that affects

other processes, and (v) recover quickly and smoothly from

disturbances, product mix, or production rate changes. In the

simulation setup, we used the TE plant code developed by

Bathelt and Ricker [64] and ran the code in Matlab R2021b.

We set the simulation time T to 100 hours. We used a 64-bit

Dell system made up of an Intel (R) Core (TM) i7-7700HQ

CPU @ 2.80GHz with 20GB of memory. Firstly, we run the

simulation without disturbances using the base case values

specified by Downs and Vogel [56] and observe the normal

behavior of the plant in real time (see Figure 13). Second, we

ran the simulation using the same setup under disturbances

and recorded the effect on the plant. The real-time data

obtained when the plant is operated under disturbances were

fed into our BBN model to identify the overall impact of each

disturbance on the SIAC criteria, thus eliminating any biases

that can impact the identification of actual HCEs due to the

considerable dependence on domain experts or knowledge. To

understand the type of data used for our analysis, we displayed

part of the data in Figure 6. The data show the impact of each

disturbance on feed rates, price, process variables, production

rate, quality, etc. during production.

Figure 6. Real-time Simulation Data of the plant under Disturbances

As noted in section 3.1, the first phase of our proposed

approach is consequence prioritization using BBN with SA

analysis. In BBN modeling, the first part is to build a net-

work graph or DAG to capture casual relationships between

variables (i.e., the SIAC criteria).

Figure 7 represents the directed acyclic graph (DAG) of our

BBN. The disturbance activation node represents a probabilis-

tic action or event that can impact the SIAC criteria to cause

HCE. Our BBN model in Figure 10 (i.e., Figures 8 and 9) is

modeled using the GeNIe modeler explained in section 3.1. It
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Figure 7. DAG of our Bayesian Belief Network (BBN)

depicts the consequence index of disturbance activation. The

Figure 8. BBN model (Scenario 1)g

Figure 9. BBN model (Scenario 2)

Figure 10. BBN model to determine the consequence index

of disturbance activation

CPT for each node was constructed based on real-time data

generated during plant simulation under disturbances. In other

words, the CPT is built based on the degree of impact of

each disturbance on the feed rates, price, process variables,

production rate, quality, etc. (see Figure 6). The assignment

of values for our CPT is between 0 and 1 where 0 denotes no

impact and 1 denotes the highest impact. During production,

the amount of A feed component released into the reactor

under normal working conditions is between 24% and 30% per

hour. However, an attack or event can cause an increase in the

feed components and underlying processes, forcing the rate of

flow outside the defined setpoints or boundaries. For example,

the activation of disturbances 1 and 3 has varying degrees of

impact on the feed component A, that is, 28% - 100% and 24%

- 28%, respectively, during production. Therefore, their CPT

values vary accordingly. We applied this type of reasoning for

the construction of our CPT where the assignment of values

depends on the level of impact on the independent variables

as shown in the simulation data. Based on our CPT for each

node, we calculated the impact of each disturbance using the

equations 2 and 5 implemented by the GeNIe modeler. The

result of our BBN model shows that the TE plant reacts

differently to each disturbance and the consequence index

varies considerably depending on the disturbance introduced.

As shown in Figures 8 and 9, disturbance 6 (IDV6) has a

greater impact on the system than disturbance 7 (IDV7). To

verify the accuracy and reliability of our model, we introduce

the concept of sensitivity analysis (SA) implemented using the

GeNIe modeler. The result of our SA model (see Figure 11)

Figure 11. Sensitivity analysis of our BBN network

shows that the ”changes in process variable” and ”changes in

feed rates” nodes are critical nodes, which implies that any

slight changes in these nodes will greatly impact the target

node. The concept of sensitivity analysis is useful in helping

security experts and engineers clearly identify nodes that need

maximum protection, as impacts on these nodes would have

devastating effects on the system. Therefore, any attacks,

events, or actions that will impact the identified sensitive nodes

(i.e. changes in process variables and changes in feed rates)

must be mitigated. Furthermore, to facilitate the identification

ofHCE based on our BBN and SA results, we represent the

overall impact of each disturbance on the TE plant in the graph

shown in Figure 12.

From the graph we see disturbances that have high, medium,
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Figure 12. Consequence Index of disturbance activation

and low impacts on the plant. Having identified the events

or actions that can lead to HCE, we can investigate possible

attack scenarios to cause disturbance-induced HCE.

4.2. Consequence-based Targeting

In this phase, we will discuss in detail how a malicious actor

can exploit the system by introducing a disturbance (s) that

can disrupt the system. In our study, we define HCE as events,

actions, or attacks that can affect the SIAC criteria. Therefore,

we discuss possible attack scenarios that can exploit SIAC

cyber risk factors.

i. Safety threats
• Advanced-Persistent Attacks (APTs)

Attack Scenarios: A sophisticated group of attackers gains

access to critical components and plant processes through

the backdoor to cripple the plant.

• Insider threats.

Attack Scenarios: A disgruntled employee gains control

of the system by increasing privileges to cause safety

violations.

• Zero-day Exploits

Attack Scenarios: The attacker exploits an unknown weak-

ness in the system to impact plant safety

ii. Integrity threats
• Code injection or modification

Attack Scenarios: Injection or modification of plant codes

through remote connection or phishing to disrupt the normal

operation of the plant essential to cause HCE.

• Command Manipulation

Attack Scenarios:Remote connection to the controller to

modify control commands to cause HCE.

• Measurement Manipulation

Attack Scenarios:Man in the middle attack (MITM) that

intercepts and introduces noise into sensor measurement.

iii. Availability threats
• Infrastructure Failure

Attack Scenarios: An attack that determines the best time

to introduce disturbance or noise into the plant leading to

the plant’s shutdown.

• Infrastructure Overload

Attack Scenarios: A DOS attack that overloads the plant

with noisy data, keeping the plant too busy and unavailable.

iv. Cost threats
• Ransomware

Attack Scenarios: An attacker who gains unauthorized

access to encrypt the proprietary data of the plant and

demands a ransom in exchange for the decryption key.

• Man-in-the-middle (MITM)

Attack Scenarios: A MITM attack that modifies critical

processes and levels of a plant to cause an increase in

production cost.

Based on the identified possible security threats, we performed

a code injection integrity attack to cause HCE that can impact

the SIAC criteria by adding a function block in C to introduce

IDV6 during production. We maintain the same simulation

setup with simulation time = 100 h, where the payload is set

to run at T = 50 h.

Figure 13. Plant simulation result under normal operations

Figure 14. Plant simulation result under integrity attack

We compared the result of the plant under normal operation

and under attack and found that there were notable impacts

on production cost, process variables, feed rates, production

rates, and final products, and in a short period of time, the

plant was completely shut down due to a low stripper level

as seen in Figure 14. For example, the cost of production

increased to over $275 against $120 under normal operation.

The highest amount of feed A released into the reactor per

hour increased from 30% to 100%. In the real world, such

impacts on chemical, nuclear or water treatment plants can

lead to disasters such as equipment damage, environmental
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or water pollution, or even loss of life. Furthermore, we

noticed that the result is consistent with our BBN and SA

models. The attack result shows that changes in feed rates

and process variables, such as stripper level, reactor pressure,

and temperature, have the highest effects on the plant, making

these nodes the most critical nodes in our model. The proposed

CCE-BBN approach offers several advantages over alternative

cybersecurity risk assessment techniques. One key advantage

is the use of probabilistic analysis to identify and prioritize

HCEs to improve protection and mitigation strategies for

safety-critical systems.

5. CONCLUSION AND FUTURE WORK

The complexity and progress of Industry 4.0 pose a serious

challenge to the security and protection of critical infrastruc-

tures. All previous efforts to eliminate cybersecurity risks

and threats yielded little or no results, with organizations

playing catch-up game or hoping never to be attacked. In this

paper, we explore the strengths and weaknesses of well-known

cybersecurity risk assessment approaches and therefore pro-

posed a new enhanced framework capable of addressing these

weaknesses and the risks and threats related to cybersecurity

today. The CCE-BBN methodology combines the concept

of Consequence-Driven, Cyber-Informed Engineering and the

Bayesian belief network with a sensitivity analysis (SA) for the

analysis, identification, and prioritization of high-consequence

events (HCE) by identifying and classifying HCE, security

threats within the target system with possible attack scenarios,

and a demonstration of how an attacker can exploit the system

to cause the identified HCE. In this work, we treat events,

actions, or attacks that have a severe impact on system safety,

integrity, availability, and cost (SIAC) as HCEs. We built our

BBN and SA models based on the system’s simulation real-

time data using the GeNIe modeler to eliminate the high

dependence on human or expert knowledge during HCE prior-

itization. The approach we propose demonstrates effectiveness

in assessing risks both at the system / component level and

during the initial phases of system design and development.

The CCE-BBN enables security experts to think and act like

attackers with a protective and defensive mindset. It should be

noted that our approach begins where many cybersecurity risk

assessment methods end. Specifically, while other approaches

may prioritize identifying threats that could potentially result

in severe consequences, which can be both time-intensive and

may fail to detect genuine HCEs, our framework prioritizes

identifying HCEs that could cripple critical assets or func-

tions. Once we have identified the HCE, we then analyze

the threats that could trigger those events. We elevate our

proposed approach to the Tennessee Eastman Chemical Plant

Process Model to demonstrate how our proposed approach

can be applied to real-world chemical plants or safety-critical

systems. We conducted an integrity attack to disrupt the system

to cause HCE. The overall result of our approach will allow

cybersecurity experts and engineers to build effective and

efficient protection and mitigation strategies for safety critical

systems.

In future work, we plan to build improved protection and

mitigation measures against identified security threats within

the target system. The emphasis is on detecting attacks and

ensuring that the system can carry out its critical mission while

under attack, as well as recovering the system in real time

during an attack.
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