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Abstract—The disruption caused by Software Defined 
Network and Network Function Virtualization (SDN/NFV) 
technologies will have many impacts on the telecom network.  
Specifically, the network architecture based on ETSI MANO 
comprising Virtual Infrastructure Manager (VIM), Virtual 
Network Function Manager (VNFM), and NFV Orchestrator 
(NFVO) will significantly change how we operate and 
manage the telecom network.  These impacts on the network 
architecture will be made gradually. Thus, the migration from 
non-virtualized networks to all virtualized networks will 
happen step by step. By introducing new actors into the 
telecom ecosystem, NFV-MANO will bring in new business 
models.  It is envisaged that these new actors/models will 
promote competition hence the demand for more flexible 
charging models with real-time charging. In this research, we 
will address the architectural realization of the SDN/NFV 
charging model under the business model of MANO 
(MANagement and Orchestration) when the service provider 
(SP) uses the Network Function Virtualization Infrastructure 
(NFVI) from the NFVIaaS Provider in a distributed multi-
access edge computing (MEC) environment. To optimize the 
Quality of Service (QoS) of MEC resource allocation for 
incoming services and maximize the overall operating profit 
of the service provider adopting our charging model, we also 
propose a new cooperative multi-agent actor-critic based 
deep reinforcement learning (MADRL) method trained with 
proximal policy optimization algorithm, namely Coop 
MAPPO. The results of our experiments showcase the 
superiority of the Coop-MAPPO multi-agent system over 
alternative decision-making approaches, with its potential for 
enhancing operational efficiency and profitability while 

minimizing failure rates. 

Keywords- Multi-Agent Deep Reinforcement Learning; 
Distributed Edge Computing; Software Defined Network; 
Network Function Virtualization; Service Provisioning; 
Charging Factors; Charging Models 

1. INTRODUCTION  

The emergence of Software Defined Networks (SDN) and 

Network Function Virtualization (NFV) technologies marks 

the onset of a revolutionary phase in traditional networking 

paradigms. They create vast opportunities for 

telecommunications operators to reshape their networks and 

clouds infrastructures into cost-effective, elastically scaling 

environments. These changes will greatly affect how an 

operator designs, develops, manages, delivers, and charges 

its products and services. In order to adapt to these disruptive 

changes caused by SDN/NFV, telecom operators will need to 

change the way they used to charge and bill their customers 

for their products and services. The virtualization of Software 

Defined Networking (SDN) and Network Function 

Virtualization (NFV) is set to introduce several new actors in 

the ecosystem, including VNF vendors/VNF marketplaces, 

VNF as a Service (VNFaaS) provider, Network Function 

Virtualization Infrastructure as a Service (NFVIaaS) provider 

[1]. These actors can generate three disctint business models: 

Service Providers (SP) using the NFVI from NFVIaaS, 

SPs/VNFaaS provider offering VNF as a service to xVNOs 

(Virtual Network Operators), and Communication Service 

Providers (CSPs) leasing the VNF S/W(software) from VNF 

Providers. By reshaping the conventional networking 

paradigms, new revenue streams and new charging 

factors/models based on different assumptions under a 

desired business model can be introduced into the 

telecommunications ecosystem. Consequently, this evolution 

stands to challenge the conventional pricing and charging 

model due to its high flexibility. For example, CSPs can lease 

VNF software from VNF providers, and be charged by 

considering the type of VNF and its number of instances. In 

this business model, the charging model will be based on the 

maximum number of VNF requests, number of requests 

handled by VNFs, etc. In a previous study [2, 3], we 

identified and categorized new charging factors for 

SDN/NFV by linking them to MANO (Management and 

Orchestration) events and defined new charging models 

based on these charging factors to enable pricing of 

SDN/NFV products and services. 
Multi-Edge Computing is a valuable approach to improving 
the performance and scalability of NFV services by 
offloading requests to the edge of the network. It refers to a 
further extension of MEC, where computing resources are 
deployed at multiple edge locations, distributed across the 
network [4 - 7]. This allows for even greater flexibility and 
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scalability in offloading NFV requests to the edge. MEC 
provides several benefits for NFV request offloading. Firstly, 
by offloading requests to the edge of the network, NFV 
services can be delivered with lower latency, improving the 
user experience. Secondly, MEC allows for greater 
scalability of NFV services, by distributing computing 
resources across multiple edge locations. Next, offloading 
requests to the edge of the network can reduce network 
congestion and improve overall network performance. Last 
but not least, by deploying computing resources closer to the 
end-users, MEC can provide enhanced security for NFV 
services. 
Reinforcement learning (RL) [8] is a group of Artificial 

Intelligence (AI) techniques that focus on developing an AI 

agent or multiple AI agents capable of taking actions in an 

environment to maximize a notion of cumulative reward 

programmed by AI practitioners. With the advancement of 

deep learning (DL) [9], deep RL (DRL) has emerged as an 

effective set of AI algorithms to tackle several real-world 

problems in many areas, including even communication 

technology development, optimization, and automation in 

MEC networks [10 – 14]. However, despite the success of 

DRL in multiple aforementioned scenarios, as the 

environments in real-world scenarios grow bigger, one well-

trained AI agent may not be enough to efficiently handle the 

given objectives. This is where the concept of multi-agent RL 

(MARL) [15 -18] comes into play. In a MARL system, there 

are at least two AI agents inside the shared environment either 

working together or competing against each other to achieve 

the shared objectives. MARL allows the incorporation of all 

the different angles of the environment and makes it easier to 

expand as each AI agent can be either trained independently or 

collaboratively. 

In this research article, we will address the charging 

architecture of SDN/NFV in a distributed multi-edge access 

(MEC) network. We also propose a multi-agent system based 

on deep reinforcement learning for intelligent NFVIaaS 

resource provisioning and charging. The goal is to develop 

Edge-AI agents that can minimize execution latency and 

operation costs, and maximize overall profit for the host 

service provider. The main contributions of this paper can be 

summarized as follows. 

� We address the MANO-based NFVIaaS offline charging 

architecture in the MEC network for the business model 

when a service provider leverages NFVI resources from 

an NFVIaaS provider. NFVIaaS offline charging is 

implemented by utilizing a charging data collector (CDC) 

located at the NFVI layer of each edge node to detect 

chargeable MANO events that correspond to charging 

factors. The CDC then sends the charging information to 

the Charging Data Function (CDF) simulator situated 

within the Virtual Infrastructure Manager (VIM) layer of 

each edge node. The role of the CDF simulator is to 

generate conclusive charging data records (CDRs) based 

on the received information. 

� To automatically maximize the operational profit and 

minimize the service failures of the proposed MEC 

NFVIaaS, we design and develop a new multi-agent 

Edge-AI algorithm specifically for SDN / NFV service 

provisioning in MEC networks based on cooperative 

multi-agent actor-critic methods with proximal policy 

optimization, namely Coop MAPPO. The model trained 

with this algorithm can be deployed on each edge node 

decentrally and does not require that NFV requests are 

well-modeled. Our experiment results show that Coop 

MAPPO obtains higher rewards as compared to baseline 

algorithms. 

 
The rest of this article is organized as follows. Section II 

discusses the background knowledge and reviews the related 

works in network function virtualization infrastructure, 

distributed edge computing, and multi-agent deep 

reinforcement learning. Section III defines the problem 

formulation. Section IV presents the proposed system 

architecture and the design of distributed Edge-AI. Section V 

shows an analysis of our simulation results. Finally, Section VI 

concludes this article and lists out possible future research 

directions. 

2. BACKGROUND KNOWLEDGE AND RELATED WORK 

As discussed above, SDN/NFV will systematically influence 
network architecture. Migration from non-virtualized 
networks to all virtualized networks will be a gradual process, 
as outlined in [19]. In this section, we discuss the background 
knowledge and related works on SDN / NFV technologies, 
charging factors, charging models, and the applications of 
multi-agent reinforcement learning systems in resource 
provisioning. 

2.1. Related Work 

The influence of SDN/NFV on network architectures and 

management is introducing new pricing and business models 

to the telecommunications ecosystem. To illustrate, Naudts et 

al. [20] introduced an advanced dynamic pricing algorithm for 

required substrate resources. Their algorithm leveraged the 

infrastructure provider's revenue based on historical data, 

current infrastructure utilization levels, and competitor pricing. 

For another example, Chekired et al. [21], where they proposed 

a real-time dynamic pricing model within a cloud architecture 

designed for the charging and discharging services of electric 

vehicles and building energy management. This cloud 

computing architecture was built upon the foundations of SDN 

and NFV. However, it is important to note that none of these 

aforementioned SDN/NFV initiatives have explicitly defined 

charging models and architectures. 

Some possible charging architectures have been developed in 

the cloud and M2M (Machine to Machine). To the best of our 

knowledge, cloud services can be categorized into three main 
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types: Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS) [22]. Various pricing 

models and architectures can be applied to different types of 

cloud services based on their pricing factors. For example, 

Zhang et al. [23] presented an open standards-based 

framework for the integration of IMS (IP Multimedia 

Subsystem) and cloud computing. The charging system 

described in this document has initiated the charging process 

and sent offline or online charging requests. Furthermore, 

M2M communication introduces new charging models and 

architecture based on the weight and expected usage 

parameters of the four basic charging factors: data transfer, 

storage, connectivity and subscription [24 - 27]. In addition, 

Lin et al. [26] presented an M2M charging architecture design 

to collect information about defined charging factors in both 

the service and network layers. 

2.2. ETSI Management and Orchestration (MANO) 

NFV MANO constitutes an architectural framework 
designed to oversee the management and orchestration of 
virtualized network functions (VNFs) alongside other 
software components. It supports the management and 
orchestration of all resources in a cloud data center, including 
compute, network, storage, and virtual machine (VM). It 
enables flexible integration of new services and supports 
rapid scalability of network components. Illustrated in Figure 
1, the ETSI MANO architecture is segmented into three 
primary functional divisions [28]: NFV orchestrator 
(NFVO), VNF manager (VNFM), and virtualized 
infrastructure manager (VIM). The goal of these three blocks 
is to deploy and connect functions and services throughout 
the network. Furthermore, MANO includes eight reference 
points, denoted as Ve-Vnfm-em, Nf-Vi, Ve-Vnfm-vnf, Or-
Vi, Os-Ma-nfvo, Vn-Nf, Or-Vnfm, Vi-Vnfm [29-37], each of 
which manages the exchange of events among different 
functional blocks in MANO. 
Within the MANO framework, events are categorized into 
two distinct types: Management and Control Events, and 
Usage and Data Events. The former is employed to initiate 
the creation or deletion of VNF instances and the dynamic 
scaling of such instances. Conversely, usage and data events 
furnish details concerning the utilization of NFV resources in 
terms of volume, duration, or a combination of both [38]. It 
is important to know which MANO events need to be 
measured to collect information about charging factors, as not 
all events are charging events. Only those related to the 
business model will be utilized for charging and billing 
purposes. 

2.3. Charging Factors of SDN / NFV 

Charging factors serve as the metrics employed by the 

operators to charge for services offered to their clients. In our 

prior research efforts, we have successfully identified and 

outlined a comprehensive set of charging factors for the new 

 
Figure. 1. MANO Architecture. 

 

business model introduced by SDN/NFV [2]. In this section, 

we will provide a summary of the charging factors for the 

"Service Provider (SP) using NFVI from an NFVIaaS 

provider" business model. In this business model, the service 

provider (SP) will be charged for the use of NFVI resources. 

We identified seven such charging factors, including: 

� Type of CPU used - A virtual CPU, commonly referred 

to as a virtual processor, represents a physical central 

processing unit (CPU) allocated to a virtual machine 

(VM). This charging factor refers to what type of CPU 

resource is offered to the service provider(SP). 

Illustrative examples encompass single-core CPUs, 

dual-core CPUs, quad-core CPUs, etc. 

� CPU time usage - The CPU time signifies the duration of 

processor time utilized by a particular service. 

Corresponding charging will be applied to the service 

provider accordingly. 

� Type of storage used - This charging pertains to the 

category of storage the service provider intends to utilize 

from NFVI. Different storage types are available, 

including primary storage and secondary storage. 

� Storage usage - This charging factor quantifies the 

volume of storage allocated to the service provider. The 

service providers will be charged based on the size, the 

duration and the location of the storage it actively utilizes 

from the NFVI. 

� Bandwidth - This charging factor signifies the upper 

limit of data transfer speed within a network or internet 

connection. A service provider will be charged according 

to the bandwidth provided to them. 

� QoS Level - The Quality of Service (QoS) Level stands 

as a service assurance provided by the NFVIaaS provider 

to the service provider. 

� Type of Accelerator used - This charging factor pertains 

to the specific category of accelerator resource extended 

to the service provider. Illustrative instances encompass 

hardware accelerators, graphics accelerators, 

cryptographic accelerators, web accelerators, and more. 
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2.4. Charging Models of SDN / NFV 

Charging models serve as mechanisms that enable service 
providers to establish pricing for their offerings within the 
telecom network. In addition, charging models can help 
telecom customers find the right pricing plan for their specific 
network usage. Previously, we defined a list of charging 
models for each of the business models introduced by 
SDN/NFV [3]. This section will provide a concise overview 
of the charging models for the "Service provider(SP) using 
NFVI from an NFVIaaS provider" business model. These 
charging models are categorized based on the classification 
of charging factors delineated in our preceding research [2]. 
Users can be charged either based on volume and quantity or 
based on value. Where value-based charging factors are 
relevant, the customer will be charged in correspondence 
with the quality of services they receive. Conversely, in 
scenarios where volume-based charging factors come into 
play, customers will be charged for the amount of services 
they purchase. In this context, various charging models can 
be formulated by employing pertinent subsets of charging 
factors from both categories, as depicted in Table 1.  
Table 1 illustrates several examples of volume-based and 
quantity-based charging models, such as " postpaid periodic 
billing based on maximum CPU usage limit " and " Prepaid 
billing based on maximum Storage usage limit ". The former 
involves charging users a fixed fee at regular intervals, like 
weekly or monthly, while the latter approach would 
 
Table 1. Charging models examples derived from NFVIaaS 

Charging Factors 
Business 
Model 

Charging Factors 
Combination 

Examples of Charging 
models 

Service 
provider(SP) 
using the 
NFVI from 
NFVIaaS 
Provider 

• Type of CPU 

used 

• Amount of 

CPU used 

� Postpaid monthly 

billing based on 

CPU usage limit 

� Prepaid billing 

based on CPU 

usage limit 

• Type of 

storage used 

• Amount of 

storage used 

� Postpaid periodic 

billing based on 

maximum Storage 

usage limit 

� Prepaid billing 

based on Storage 

usage limit 

• Type of CPU 

• Type of 

storage 

• Amount of 

CPU usage 

• Amount of 

storage usage 

� Postpaid periodic 

billing based on 

Storage usage limit 

� Prepaid billing 

based on Storage 

usage limit 

• Bandwidth 

• QoS 

• Type of 

accelerator 

� Postpaid Periodic 
billing based on 
maximum 
bandwidth, level of 
QoS and type of 
accelerator used. 

immediately deduct the fee from a prepaid account in real-
time, corresponding to the quantity of storage utilized.  
It is crucial to note that the charging factors provided in Table 
1 can be utilized to track resource consumption either in real-
time or over specified time frames. Table 1 also presents 
some examples of charging models derived from value-based 
charging factors, such as " postpaid periodic billing based on 
maximum bandwidth and level of QoS supported", " postpaid 
periodic billing based on level of QoS and type of accelerator 
used". Importantly, it should be noted that all charging 
models relying on value-based charging factors within this 
particular business model are designed exclusively to 
accommodate postpaid models, as they do not operate on the 
premise of charging based on quantity and volume 
consumed." 
 

2.5. Multi-Agent DRL 

As introduced in the earlier section, reinforcement learning 

(RL) [8] is a class of machine learning methods concerned 

with how to train one or multiple intelligent agents to take 

actions in an environment with the goal to maximize a notion 

of cumulative reward. A DRL algorithm such as Deep 

Dueling Q-Networks [11] can be used to find an optimal slice 

request admission policy in just a few iterations of training. 

In scenarios similar to our use case, DRL also seems to 

provide promising results for service resource provisioning 

in NFV-enabled networks. Nouruzi et al. [12] formulated an 

optimization problem with the aim to minimize the cost of 

NFV-enabled network resource utilization and used a Deep 

Q Network (DQN) algorithm for resource allocation for 

function placement and dynamic routing by considering the 

available network resources as DQN states, which resulted in 

up to 14 % increase in the number of admitted network 

requests the average number and up to 20 % reduction in the 

network utilization cost. Li et al. [13] also studied and used a 

DRL algorithm for online service placement and request 

assignment problems in a MEC network where future request 

arrival is unpredictable. Their simulation results showed an 

improvement of almost 50% in performance compared to 

other baseline algorithms operating in the same environment. 

Despite the success of the DRL algorithms in several 

communication applications, a large number of real-world 

problems in this field still cannot be fully solved by a single 

active RL agent that interacts with the environment. The 

direct solution to this challenge is to adopt the use of multi-

agent systems. In a multi-agent reinforcement learning 

(MARL) setting [15 – 18], multiple agents are put together in 

a shared environment where their interests might be aligned 

or misaligned. MARL allows exploring all the different 

alignments and how they affect the agents’ behavior. The first 

notable example of how MARL can be applied to a larger 

communication setting can be found in an article recently 

published by Chen et al. [16], in which they designed a multi-
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agent deep RL-based elasticity control approach (DRLEC) to 

tackle the pivotal problem in maintaining the quality of 

service (QoS) and minimizing network cost in SDN/ NFV 

networks. They demonstrated that DRLEC would provide 

better performance than heuristics and single-agent DQN 

algorithms. Additionally, DRLEC could almost achieve the 

ideal performance which would only happen in case the 

dynamics of network traffic were in advance. In another 

example, Tam et al. [17] trained and used multi-agent deep 

Q-networks (MADQNs) to enforce a self-learning 

softwarization, optimize resource allocation policies, and 

advocate computation offloading decisions in an NFVI-MEC 

environment of a large-scale heterogeneous software-defined 

IoT cellular network. Similarly, since network traffic and 

computing demand have been changing dramatically due to 

diverse types of network services, such as high-quality video 

delivery and operating system (OS) updates, Suzuki et al. 

[18] proposed a dynamic virtual network (VN) allocation 

method based on cooperative multi-agent deep reinforcement 

learning, namely Coop-MADRL. In a scenario where the 

variables in the shared environment are fluctuating, the 

proposed Coop-MADRL could still achieve generalized 

performance in maximizing the utilization efficiency of 

limited network resources. The key idea in their work is to 

utilize the concept of a multi-agent system to reduce the 

number of candidate actions per agent and can improve the 

performance for VN allocation since the input parameters, 

and required resources to train and operate each agent reduce 

greatly, in comparison to having one big AI agent to operate 

on bigger environment information. 

 

3. PROBLEM FORMULATION 

As shown in Figure 2, we consider a multi-access edge node 

ecosystem, which consists of a set of edge nodes E= 

. Each edge node   is equipped with the NFVI 

resources to realize the business model of SDN/NFV where 

the “Service Providers (SP) making use of the NFVI 

resources from NFVIaaS Providers”. Therefore, the service 

providers can be charged by the usage of the NFVI resources 

in our proposed ecosystem. Besides, each edge node  hosts 

a logical smart edge NFV orchestrator to manage the 

NFVIaaS and its resources. The goal of the service provider 

managing the whole ecosystem is to maximize its operational 

profit while maintaining low failure rates across the MEC-

enabled NFVIaaS system. Each edge node  has limited 

computation and communication capacities. Each edge node 

has |R| resource types, and the resources type are the number 

of CPU, memory and bandwidth which are among the most 

frequently utilized parameters. For every charging factor i 
relevant to a charging model, a corresponding charging 

function can be formulated according to its requisite 

parameters denoted as . Presented 

below is the definition of a charging function for a charging 

 
Figure 2. NFVIaaS System Overview 

 

model based on CPU, memory and network resources along 

with their respective parameters: 

1) Charging function for CPU based charging model: 

 

 

  (1) 

 
2) Charging function for memory based charging model: 

 

  (2) 

 

3) Charging function for network based charging model: 

 

  

  (3) 

 

 

Note that for each charging factor i, a comprehensive market 

research and commercial analysis is required to ascertain the 

weight of that factor, wi, in the total pricing. Thus, the price 

of a charging model comprising n charging factors can be 

computed utilizing the charging function of each charging 

factor i and its corresponding weight  by the following 

overall pricing formula: 

 

   (4) 
 
The profit maximization problem: 
 

  (5) 

here π is our profit function and  is our failure function.  

Letting R be the revenue function which is the total revenue 

acquire by the SP from the MEC node and C the cost function. 

The failure function can be defined as: 

  (6) 
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  (7) 

The profit function can be defined as the total price of the 

resources deducted by the total cost that the service provider 

will pay for the NFVI resources, which can be given as 

followed: 

   (8) 

 (9) 

 

We assume that the expected values of the CPU, memory / 

storage, and network utilizations follow the uniform 

distributions under the range given in Table 3. Moreover, for 

simplicity, we also list the main symbols and mathematical 

notations along with their definitions adopted in this paper in 

Table 2. 

4. PROPOSED MULTI-AGENT NFVIAAS PLATFORM 

Figure 2 illustrates the architecture of the proposed intelligent 
NFVI resource provisioning system and how each AI agent 
provisions the system and communicates with one another. 

4.1. Data Collection and Simulations 

In our prior research [2], we identified how to gather 

information about the charging factors from related MANO 

events. To illustrate, consider the following three (3) events 

from the NF-VI reference point: Allocate VM with an 

indication of compute resource, Update VM resources 

 
Table 2. Table of symbols 

Notations Description 
E The number of edges nodes. 

 The number of CPU cores available on each node. 

 The amount of CPU time utilized on each edge 
node  

 CPU unit time price. 

 how much memory time  is used on each edge 

node   . 

 Memory unit time price. 

 how much bandwidth time  is used on each edge 

node  . 

 Bandwidth usage unit price. 

 The profit earned by the service provider. 

 Total price of the NFVI resources. 

 Total cost paid by the service provider for the 
NFVI resources. 

 Number of failures at time step t. 

 Initial number of failures before the simulation 
begins. 

 Remaining time required to complete a NFV 
request. 

 Importance weight between operational profit and 
failures. The default value is 0.5. 

 Revenue of an edge node at time t. 

 

allocation, and Terminate VM, we can get the information 

about the “CPU type” charging factor. On the other hand, for 

the following three MANO events in the NF-VI reference 

point: Create a connection between VMs, configure 

connection between VMs and Remove connection between 

VMs, we can acquire the requisite information for the 

'Bandwidth' charging factor. As depicted in Figure 2, for the 

NFVIaaS charging architecture, we use of a charging data 

collector (CDC) situated within the NFVI layer of each edge 

node to detect chargeable events such as “allocate VM with 

indication of compute resource”, “update VM resources 

allocation”, and “terminate VM'', which correspond to the 

charging factors. Subsequently, the CDC transmits this 

pertinent charging information to the Charging Data Function 

(CDF) simulator positioned within the Virtual Infrastructure 

Manager (VIM) layer to generate final charging data records 

(CDRs). 

4.2. Design of Multi-Agent DRL Algorithm 

In this subsection, we first provide the description of our 

Edge-AI architecture design. 

 

Table 3. Settings of Parameters for Simulations 

Parameters Values / Ranges 

Number of edge nodes 5 

Time per time step / episode (in ms) 100 

Number of NFV requests per episode 50 

Number of episodes in epoch 200, 50 

Number of epochs 10 

Storage capacity (in GB) 4 – 1024 

Memory capacity (in GB) 4 – 16 

CPU cores 
[1, 2, 4] : single-, dual-, 

and quad-core 

CPU clock speeds (GHz) 
Single-core: 2.5 
Dual-core: 3.5 
Quad-core: 5.0 

CPU cycle capacity (millions of 
instructions) 

3,000 – 10,000 (Scaled: 3 
- 10) 

Bandwidth capacity (in Gbps) 0.1 – 10 

Required CPU cycles (millions of 
instructions) 

100 – 5,000  
(Scaled: 0.1 - 5) 

Required memory (in GB) 0.1 – 2 

Required storage (in GB) 0.1 – 5 

Required bandwidth (in Gbps) 0.1 – 1 

Required completion time (in ms) 100 – 1,000 

CPU unit cost (in x10-4 USD / second) 0.5 – 1.0 

Memory unit cost (in x10-4 USD / MB 
second) 

0.4 – 0.9 

Bandwidth unit cost (in x10-4 USD / MB) 0.4 – 0.9 

Discounts (%) 0.01 – 0.3 
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Then, we present a cooperative multi-agent proximal policy 

optimization (Coop MAPPO) algorithm for solving the 

defined multi-agent RL problem. We begin by providing the 

detail of Markov Decision Processes (MDP) in our work as 

follows: 

� State Space 

We define the state space S as: 

 

 

 

where E and O denote the number of edge nodes 

participating in this NFVIaaS system and number of observed 

state features and parameters, respectively. A state at time 

step t can be given by: 

 

                  (10) 

 

It summarizes the environment information of the entire 

MEC platform at time step t. Since we assume that all agents 

in this system always communicate with their peers whenever 

they are online, every node has the same state vector. Ut = [ 
ucpu,1, umem,1, ubw,1, ucpu,2, umem,2, ubw,2, …, ucpu,E, umem,E, ubw,E ] 

is the utilization rate vector of each edge node at time step t. 
Features inside this vector contain the current utilization 

levels of CPU, memory and bandwidth of every participating 

edge node. Ft = [f1, f2, f3, …, fE] is the vector of operational 

failure rates of each participating nodes at time step t. These 

failure rates are randomly generated based on Weibull 

distributions with the shape value equal to 2 and scale 

parameter equal to 1. We assume that every participating 

node has received 1,000 requests before the beginning of this 

simulation ( ). Therefore, we update the failure rates with: 

 

 

   (11) 

 

To decide whether the task being successfully accepted or fail 

at each time step or not, we apply the following rule after the 

acceptance decisions have been made: 

 

 

 

Furthermore, to decide whether the task being offloaded to 

other nodes will fail at each time step or not, we first convert 

the required resources to the available resources on the target 

nodes, e.g., if the original CPU type requirement is single-

core but the selected node has a dual-core CPU, then the time 

it takes to complete the request should be shortened. To 

convert the required resource from the original node to the 

resource unit of the target node, we rely on the following 

equation: 

 

 

 

 

We can determine whether the request will be satisfied by the 

selected node or not based on the utilization levels and the 

required resource levels. Thus, we apply the following rules: 

 

 

 

Lt = [l1, l2, l3, …, lE] is the vector of maximum time required 

for all remaining tasks of each participating nodes at time step 

t. The maximum time required for each edge node to 

complete all remaining task can be given by: 

 

  (12) 

 

Ct or C(t) is the vector of costs, as defined earlier in Section 

3, of all participating nodes at time step t. Reqt = [req1,cpu, 
req1,mem, req1,bw, req1,storage, req1,time, req2,cpu, req2,mem, req2,bw, 
req2,storage, req2,time, …, req|NFV|,mem, req|NFV|,bw, req|NFV|,storage, 
req|NFV|,time] is the vector containing information regarding the 

required resources of all NFV requests at time step t. 
� Action space 

Each agent has to decide whether to accept the incoming 

NFV service request or push it to other interconnected edge 

nodes in the network. Therefore, we define the action space 

A = {a1, a2, a3, …, aE}, where an action at can be an integer 

within the range [0, E) and E is the number of participating 

edge nodes. 

� Reward function 

In this article, the optimization goal needs to consider both 

operational profit maximization and failure minimization. 

Therefore, the intermediate reward function of each agent at 

time t can be formulated as 

 

   (13) 

 

where  is an importance factor. If the value is high, the agent 

will prioritize operational profit. On the other hand, if the 

value is low, the agent will prioritize the overall failure rates 

of task offloading. In this study, we weight both equally, thus 

we set the default value of this parameter to 0.5. 

� Learning Algorithm 

Deep RL algorithms can be divided into two most common 

types: a) value-based DRL and b) policy-based DRL 

algorithms [39]. Value-based Deep RL algorithms, such as 

DQN, design value networks to estimate Q-values and then 

improve their policies based on the learned value functions. 

However, value-based DRL algorithms cannot solve large-
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scale and continuous action space problems such as ours. Due 

to the nature of greedy action selection within value-based 

DRL, these algorithms cannot handle stochastic policy 

problems. Policy-based DRL algorithms, on the other hand, 

directly calculate the policies to maximize the discounted 

rewards. The most common policy-based DRL is the policy 

gradient (PG) algorithm. Although the PG algorithms have 

strong versatility and a more stable training process, they 

have their inherent weaknesses due to large variance of 

trajectories, low sample utilization, and general attraction 

towards local optima. 

To compensate for the weak points of both RL algorithm 

types, researchers have introduced actor-critic (AC) 

architecture into the field of Deep RL [40 – 42]. In the classic 

AC architecture, there are two neural networks working 

together: one is a critic network and the other is an actor 

network. The critic network, also known as the value network 

in some literature, is used to estimate the value function while 

the actor network, also known as the policy network in some 

literature, is used to optimize the policy according to the 

estimated value function. Since AC is a combination of both 

RL algorithm types, AC has the advantages of both 

algorithms (best of both worlds). The value function from the 

critic network makes the policy update with lower trajectory 

variance. At the same time, the policy from the actor network 

makes it possible to handle continuous action problems and 

improve the versatility. Proposed and developed in 2017 by 

OpenAI [43], the proximal policy optimization (PPO) 

algorithm is one of the most recent advancements in the field 

of DRL that provides an improvement on Actor-Critic (AC) 

architecture. Unlike classical AC, PPO ensures that the 

updated policy is not too different from the old policy to 

ensure low variance in training. This leads to smoother 

training and the assurance that the AI agent may not go down 

an unrecoverable path of taking senseless actions. PPO 

defines the probability ratio between the new policy and the 

old policy as 

            (14) 

 
Now the objective function of PPO can be written as 

 

 

 (15) 

 
In the above equation, the function clip truncates the policy 

ratio between the range [1-ϵ, 1+ϵ]. The objective function of 

PPO takes the minimum value between the original value and 

the clipped value. Because of this surrogate objective, PPO 

allows the usage of multiple epochs of gradient ascent 

without stepping too far from the old policy. Therefore, in 

this work, we decide to use PPO to train multiple distributed 

AI agents to solve the cooperative MARL problem. 

5. EVALUATION 

In this section, we focus on evaluating our proposed multi-

agent system and comparing it with some other well-known 

multi-agent methods. We begin by describing the simulation 

settings of incoming service requests to our proposed 

NFVIaaS platform. Next, we describe the training process of 

the multi-agent Edge-AI system. Finally, we evaluate its 

performance in terms of operational costs and profit, and 

average response time, which are the key metrics to satisfy 

both the users’ and the service providers’ needs. 

5.1. Incoming Service Request Simulations 

To make sure that our agents can effectively offload the NFV 
requests across the proposed ecosystem, we train our agents 
in parallel on multiple episodes or time steps of randomly 
generated incoming service requests based on uniform 
distributions and given parameter ranges as shown in Table 3. 
For fair comparison among the proposed multi-agent RL 
system and other baseline approaches, we first generate 50 
requests for each time step for all edge nodes and save them 
to CSV files. To make sure that each agent is exposed to 
enough data, we generate 200 data points for each edge node. 
These data points are generated using pseudo-random number 
generators with different seed numbers, ranging from 1 to 10 
based on the node IDs. Once each agent finishes all their 
decisions in each episode or time step, the intermediate reward 
will be calculated based on their operational profit and service 
completion failures. For simplicity, we have all agents 
consider their own received NFV requests all at once first 
before considering all other NFV requests offloaded from the 
other nodes. Moreover, this allows for the agents to have a 
better opportunity to coordinate their actions and allocate 
resources more efficiently. To test our agents, we simulate 
extra 100 data points following the same configurations. 

For each time step or an episode, the agent repeats the 

following operations for NFV placement: 

1) Each agent reads the information of every NFV 

service request, its own resource utilization levels, and 

last known states of other nodes according to (10). 

2) For each NFV request , the agent makes the 

decision whether to accept the task or to offload to the 

other connected nodes. 

3) If the agent accepts the task, the node will perform 

computation on such task while the agent moves on to 

make the offloading decision of other tasks in the 

queue based on the updated states.  

4) Whenever an edge node receives a task offloaded from 

another node, it will add this task to their incoming 

task queue for decision making and replies with its 

updated state.  

5) After an edge node makes the decision for all their 

own requests, offloading agent will receive an 

intermediate reward. 
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 (a) Training period (50 requests, 200 time steps)  (b) Testing period (50 requests, 50 time steps) 

 
Figure 3. Simulation results (a) training period (b) testing period 

 
6) After the decisions of all requests in the current time 

step have been made, we move on to the next time step. 
Since we consider each time step equal to 100 
milliseconds, any requests that require less than 100 
milliseconds of computation will be assumed 
completed. If the tasks are incomplete, they will 
occupy the resources. Utilization levels will be updated 
before the agent starts considering new tasks in the new 
time step. 

5.2. Evaluation Results and Analysis 

For performance evaluation of our proposed intelligent 

NFVIaaS resource provisioning, we focus on two different 

groups of metrics: a) operational costs and profits, and b) 

service completion successes and failures. We compare our 

proposed multi-agent DRL method with two random decision 

makers based on multinomial distribution. 

� Cooperative random off-loaders (Coop-Rand): 

random decisions generated under the multinomial 

distribution. Each decision made represents node ID 

to offload the request to. 

� Non-cooperative random off-loaders (Non-Coop-

Rand): random decisions generated under the 

binomial distribution. Each decision made is 

whether or not to run each task. 

� FIFO: a decision agent that accepts requests 

sequentially until the node reaches capacity. 

As mentioned in Table 3, we train all agents simultaneously 

on datasets with 50 NFV requests sending each participating 

nodes in each episode, 200 episodes in one epoch, and 10 

epochs. 50 episodes of additional simulated data points are 

used for evaluating our proposed algorithm against the 

aforementioned baselines. The results from our experiments 

are as follows. 

 

1) Operational Profits 
Based on the simulation results presented in Figure 3.a and 

3.b, comparing the performance of the proposed multi-agent 

system (Coop MAPPO) with baseline algorithms for NFV 

request offloading, our findings demonstrate that Coop 

MAPPO outperforms other algorithms in terms of 

maximizing cumulative profit over time. 

A detailed breakdown of the cumulative profit generated by 

each node for both the proposed multi-agent system and the 

baseline algorithms is provided in Table 4. The results reveal 

that the MEC NFVIaaS system implemented with Coop 

MAPPO achieves a superior level of cumulative profit 
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compared to MEC NFVIaaS systems employing alternative 

baseline algorithms. Furthermore, our observation indicates 

that NFVIaaS systems that enable edge nodes to offload tasks 

to connected nodes exhibit significantly higher profit levels 

when compared to systems that solely rely on local task 

execution decisions. These findings emphasize the 

substantial financial advantages associated with allowing 

edge nodes to distribute their tasks among interconnected 

nodes. 

Our experimental results strongly support the use of the 

proposed multi-agent system, Coop MAPPO, in optimizing 

cumulative profit over time. Additionally, they highlight the 

economic benefits gained by NFVIaaS systems that 

incorporate task offloading capabilities for edge nodes. 

 

2) Task Completions 
In addition to its promising financial advantages, our 

proposed Coop MAPPO exhibits a notable capability in 

maintaining low failure rates. This is achieved by training the 

agents to intelligently select optimal nodes for task. 

 

Table 4. Profit after operating in test period (in $1,000) 
Algorithm Node 1 Node 2 Node 3 Node 4 Node 5 

FIFO 26.54 38.25 49.45 46.63 22.57 

NCRand 26.46 37.84 48.83 44.69 26.17 

CoopRand 103.95 8157.87 4188.11 3179.89 3096.37 

CoopMAPPO 97.16 8368.20 4990.41 4849.96 3381.78 

 
Table 5. Failure rate after operating in test period 

Algorithm Node 1 Node 2 Node 3 Node 4 Node 5 
FIFO 0.23 0.31 0.26 0.24 0.21 

NCRand 0.22 0.31 0.26 0.24 0.20 

CoopRand 0.01 0.15 0.16 0.18 0.19 

CoopMAPPO 0.05 0.13 0.08 0.07 0.03 

 

offloading, rather than accepting tasks indiscriminately when 

their utilization limits are reached. Consequently, the MEC 

NFVIaaS system that integrates Coop MAPPO surpasses 

other baseline algorithms in completing a greater number of 

NFV requests. 

To complement these observations, the detailed data 

presented in Table 5 outlines the failure rates experienced by 

each node in both the proposed multi-agent system and the 

other baseline algorithms. It is noticeable that our Coop 

MAPPO demonstrates lower failure rates when compared to 

the failure rates observed in the other baseline algorithm's 

MEC NFVIaaS systems. This finding underscores the 

superior reliability and robustness of Coop MAPPO in 

mitigating failures. The application of Coop MAPPO 

contributes to a significant reduction in failure rates and 

enhances the ability of the system to effectively handle a 

larger volume of NFV requests compared to alternative 

baseline algorithms. This outcome emphasizes the practical 

advantages of adopting our proposed multi-agent system in 

real-world scenarios. 

In addition to these two benefits of our proposed system, Coop 
MAPPO demonstrates strong scalability and adaptability 
characteristics. Its distributed nature, ability to handle a large 
volume of NFV requests, and dynamic decision-making 
process enable the system to effectively scale and adapt to 
various scenarios and scales. The agents can be duplicated, re-
deployed on new edge nodes, and fine-tuned to fit with new 
edge nodes environment based on their own NFV request and 
utilization data. The agents can also be clustered into several 
cluster of multi-access edge ecosystems in order to control the 
size of input data of each individual agent. By leveraging the 
advantages of multi-agent systems and reinforcement 
learning, Coop MAPPO provides a practical solution for NFV 
offloading in real-world deployments. The system can be 
deployed in various NFVIaaS environments, ranging from 
small-scale deployments with a limited number of nodes to 
large-scale deployments with a significant number of 
interconnected resources. 

6. CONCLUSION AND FUTURE WORK 

The advent of SDN/NFV virtualization introduces new 

dynamics and stakeholders in the telecommunications 

ecosystem, including VNF Vendors/VNF Marketplaces, 

VNFaaS Providers, and NFVIaaS Providers. These entities 

foster competition, leading to the need for more flexible 

pricing models such as prepaid and postpaid charging. In our 

previous research, we have explored and defined charging 

factors specific to SDN and NFV, enabling telecom operators 

to devise effective charging models for SDN/NFV 

accounting management. 

In this paper, we have implemented an SDN/NFV charging 

architecture within a distributed multi-edge access (MEC) 

network. Additionally, we propose a multi-agent system 

based on deep reinforcement learning, aimed at intelligent 

resource provisioning and charging for NFVIaaS. The 

objective of our research is to develop Edge-AI agents 

capable of minimizing failure rates in NFV request 

executions, reducing operational costs, and maximizing 

overall profit for the MEC NFVIaaS platform. After 

conducting experiments with 100 episodes of 50 NFV requests 

from each edge node, our proposed cooperative multi-agent 

system based on PPO, namely Coop-MAPPO, outperform 

three other baseline decision makers in terms of average failure 

rates and operational profits. 

For future work, we envision several directions that build upon 

the scalability and adaptability of our proposed system. These 

directions encompass the exploration of advanced pricing 

models for VNF as a Service (VNFaaS) and the practical 

implementation of charging models for SDN/NFV. VNF 

scheduling and resource allocation techniques can also be 

integrated with our Coop MAPPO multi-agent system to 
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further enhance scalability and adaptability. To expand the 

intelligence of Edge-AI agents within the proposed multi-agent 

system, novel algorithms and methodologies can be 

investigated. These algorithms and methodologies will 

empower agents to make more informed decisions in dynamic 

and heterogeneous environments, thereby enhancing the 

system's adaptability to varying network conditions and 

resource availability. Pursuing these directions will contribute 

to the advancement of SDN/NFV charging models, resource 

allocation strategies, and decision-making techniques, which 

could lead to more efficient and effective network and service 

management. 
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