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Abstract—Bug reproduction is a critical task in software

testing, as it helps developers to identify and fix bugs in

the software. While some automated reproduction tools are

designed to assist developers in reproducing bugs detected by

automated testing tools, they are not entirely reliable. Thus,

manual reproduction remains important. However, automated

testing tools often generate testing results that are difficult

for non-professional developers to understand, which compli-

cates their efforts to reproduce bugs. In this paper, we pro-

pose REPASSISTOR, an approach that employs an interactive

method to assist developers in reproducing bugs based on auto-

mated testing logs. REPASSISTOR is designed for reproducing

bugs in mobile applications. It leverages deep learning (DL)

and traditional computer vision (CV) techniques to analyze

application screenshots, transforming automated testing logs

into a graph representation. In this graph, edges represent test

events while nodes represent application states. With this graph

representation in place, REPASSISTOR is then able to monitor

developers’ actions and continuously track which node they

are at in this graph in real-time. Based on this understanding,

REPASSISTOR dynamically calculates and updates the optimal

path to guide developers to reproduce bugs. This guidance

is conveyed to the developers through an interactive method,

enabling effective communication and assistance throughout

the bug reproduction process. Our experiments demonstrate

that REPASSISTOR improves the performance of developers

in bug reproduction tasks.

Keywords–bug reproduction, conversational agent, software
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1. INTRODUCTION

With the development of software technology, software is

becoming increasingly powerful and correspondingly more

complex [1]. To ensure its reliability, software testing plays

a crucial role in software development [2], [3]. Initially,

software testing was primarily conducted manually. However,

given the increasing complexity of and the growing demands

for software testing, manual efforts often face a shortage of

manpower. As a result, automated testing tools have been

developed to automate the process of software testing, demon-

strating a concerted effort to ensure quality [4], [5], [6], [7].

Bugs discovered by automated testing tools need to be re-

produced to confirm and address them. Similarly, manual

reproduction may face a lack of manpower given the vast

amount of testing done by automated testing tools. As a

response, many automated reproduction tools [8], [9], [10],

[11] have been developed to reproduce known bugs. These

automated reproduction tools can analyze testing logs or

testing reports and reproduce some of the bugs identified

within the application.

However, automated reproduction tools are not completely

reliable. They typically rely on specific environments to repro-

duce bugs. If a bug is tied to complex system environments, the

automated tools may not be able to reproduce it. Furthermore,

automated reproduction tools are also fragile and may fail

to accurately reproduce bugs if there are changes in system

configurations or widgets. For example, in rapidly changing

UI scenarios (e.g., news applications), automated reproduc-

tion tools struggle to recognize changes of the UI, hence

finding it challenging to identify widgets and reproduce them

accurately. In cases where the bugs are complex, automated

reproduction tools may have difficulty determining if a bug has

been successfully reproduced. During such instances, manual

confirmation is often required.

This brings us to the necessity and advantages of manual re-

production. Manual reproduction not only avoids the problems

of automated reproduction tools but also carries other benefits.

Manual reproduction enables developers to confirm the exis-

tence of bugs reported by automated testing tools and gain

a better insight into the problem [12]. Additionally, manual

reproduction aids developers in writing more comprehensive

bug reports. When bugs are fixed, verifying the effectiveness

of those fixes also requires manual reproduction.

However, despite these advantages, reproducing bugs manually

can be challenging for developers. Automated testing tools

often include information that can be challenging for humans

to comprehend, such as coordinates and complex file structures

like XML. These unreadable data can make it difficult for

developers to understand the testing results. Additionally, it

requires not only basic testing skills but also a comprehensive

familiarity with the specific software system [13], which is

necessary to identify the environment where bugs occur.

Our study aims to address these issues related to manual

reproduction. We propose a new tool, REPASSISTOR, to assist

developers in reproducing bugs that are already discovered

and documented by automated testing tools(e.g., monkey [14]).

REPASSISTOR is a bug reproduction guidance tool developed

for Android and based on a conversational agent (i.e., chatbot).

Automated testing tools generate testing logs during the testing

process. REPASSISTOR can analyze these logs, extracting GUI

images and test events from them. These GUI images con-

tain vital information about the application’s page transaction

structure, which is crucial for developers during reproduction.

114

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

DOI 10.1109/DSA59317.2023.00024



REPASSISTOR processes the extracted information and uses

DL and traditional CV techniques to merge similar pages.

By directly dealing with images through DL and traditional

CV, REPASSISTOR avoid solving the application’s underlying

UI files or code. These merged pages, combined with the

action timestamps from the logs, form a graph data structure.

These action timestamps denote the sequence of actions, thus

establishing transition relationships between the merged pages.

REPASSISTOR reconstructs the testing process from this data

structure, building a page transition model of the application.

Then, REPASSISTOR monitors the developers’ actions and

obtains their current user interface in real time. REPASSIS-

TOR compares the developers’ current user interface with the

generated model to determine their precise position within

the model. Subsequently, REPASSISTOR calculates the optimal

action sequence to trigger the bug and conveys these actions

in a user-friendly way through an interactive communication

approach, guiding the developers in reproducing the bug. This

approach helps to solve issues stemming from a lack of

familiarity with the application of the developers. Furthermore,

REPASSISTOR takes into account potential unintended situa-

tions, such as developers not following guidance instructions

as expected and performing incorrect actions. Developers may

intentionally or unintentionally deviate from the provided

guidance. In these cases, REPASSISTOR applies appropriate

measures guide developers back to the correct interface.

Inspired by previous research on the use of conversational

agents in helping write testing reports [15], [16], REPASSIS-

TOR extends the focus to the aspect of human developers.

When it comes to software testing, interactive methods are

often used to assist in writing testing reports or performing

similar simple tasks. In contrast, REPASSISTOR innovatively

applies them to guide developers in reproducing bugs, par-

ticularly those found by automated testing tools. Developers

who conduct the testing may not necessarily be very familiar

with the application, and they might also lack relevant testing

experience. Unlike only providing analysis reports, REPAS-

SISTOR’s conversational agent can give real-time feedback on

testing information, correct errors during the testing process,

and guide developers towards more effective testing. As such,

REPASSISTOR can serve as a bridge between automated

testing tools and developers, preventing situations where the

capabilities of automated testing tools surpass the ability to

reproduce bugs of developers. REPASSISTOR also differs from

other automated bug reproduction tools that actively reproduce

bugs based on known information. Instead, it delegates bug

reproduction to developers while leveraging an interactive

method to improve their efficiency and abilities.

The conversational agent is the core of REPASSISTOR. It

provides real time interaction, allowing developers to get

immediate guidance and support. This helps developers locate

and operate reproduction steps more efficiently. Additionally,

the conversational agent’s natural language understanding ca-

pability enables developers to communicate with the system

in a familiar manner, lowering the learning curve and making

it more accessible to non-professional developers.

REPASSISTOR’s conversational agent is developed using a

highly customizable conversational agent framework [17].

Compared to some traditional conversational agents [18],

REPASSISTOR employs a more complex and customizable so-

lution. We primarily focused on training the Natural Language

Understanding (NLU) component to ensure the conversational

agent fully understands the terminology of software testing

and accurately conveys developers’ intentions. Additionally,

we customized its dialogue management component to provide

reproduction guidance instructions, enabling it to effectively

assist developers throughout the reproduction process.

In order to conduct our experiment with REPASSISTOR, we

selected a diverse set of eight applications. To ensure the repre-

sentativeness and diversity of our dataset, we utilized Monkey

as the automated testing tool and generated 28 corresponding

testing logs. Out of the eight applications, REPASSISTOR was

successful in constructing accurate models for seven, though

one application exhibited some inaccuracies in the test events.

REPASSISTOR demonstrated a strong performance in assisting

developers, successfully facilitating the complete reproduction

of 21 out of the 28 testing logs (75%), while partially guiding

the reproduction of the remaining logs. Furthermore, REPAS-

SISTOR eliminates redundant test events, thus improving the

overall speed and effectiveness of reproduction.

In summary, our study makes the following contributions:

• Design and develop REPASSISTOR, a testing result repro-

duction guidance tool based on a conversational agent.

• Conduct experiments on REPASSISTOR, demonstrating

its effectiveness and accuracy in improving reproduction.

2. MOTIVATION

There are many automated testing tools available, such as

Monkey [14], Appium [19], etc.. Developers can use repro-

duction tools like ReCDroid [20] to reproduce the testing

results of these automated tools. However, such tools don’t

always reproduce the results accurately. A variety of factors

can influence the outcome when using these tools, including

the system environment, specific app types, and compatibility

issues, which could lead to unsatisfactory results.

In situations where automated reproduction fails, manual re-

production becomes necessary. However, Manual reproduction

also faces various difficulties. When conducting manual re-

production, developers must locate the bug’s position in the

testing logs, try to reproduce the bug, understand it, and then

fix it. Testing logs often contain a large amount of information

and are difficult to comprehend, making the reproduction

process challenging for developers.

2.1. Example of Appium

Appium [19] is an automated testing framework. Many au-

tomated testing tools are built on it [21], [22]. In one test,

Appium’s log records a tap test event on the ’settings’ widget,

highlighted by a red frame in Figure 1. The testing log records

the widget’s xpath (represents the widget’s location in the

source XML file), class, and id, which are machine-readable
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but might not be easily comprehensible to developers. As a

result, performing the operation can be quite difficult.

Figure 1: Example of Appium

2.2. Example of ReCDroid

ReCDroid [20] is a representative tool for bug reproduction

currently. ReCDroid uses artificial intelligence techniques to

help reproduce different software issues effectively and ac-

curately. However, it does have some limitations in practice.

When the application interface contains confusing or am-

biguous information, the UI search mechanism of ReCDroid

fails to function correctly. For instance, we use ReCDroid to

reproduce a bug that was triggered by switching from the app’s

start page to the misc page and clicking the notification button.

ReCDroid, during the process, first automatically simulated the

user behavior of switching from the app’s launch page to the

misc page, then it attempted to click the notification button.

However, while ReCDroid managed to accomplish most steps

successfully, it did not click on the correct target widget in

the final test event, as shown in Figure 2. In other words,

even though ReCDroid accurately reproduced most of the test

events, it fell short in the final, critical click operation. While

ReCDroid has improved bug reproduction efficiency to some

extent, in some complex scenarios, we still need to rely on

manual reproduction for the reliability.

3. APPROACH

We propose REPASSISTOR, a tool designed to assist software

developers in reproducing bugs found by automated testing

tools. REPASSISTOR simplifies the debugging process and

enhances the user experience by the following key capabilities:

(i) Constructing a model that uses information from automated

testing logs to discern the necessary test events to reproduce

the bug. (ii) Identifying the user’s position within the model,

determining the system’s current state, then using algorithms

to calculate the optimal actions needed to reproduce the bug.

(iii) Guiding developers in reproducing the bug through an

Figure 2: Example of ReCDroid

integrated interactive interface, which offers real-time support,

instructions, and feedback on their actions.

REPASSISTOR extracts Test Events and Exceptional State
from logs of automated testing to serve as a foundation

for bug reproduction. Typically, exceptional state refers to

uncaught exceptions in the software. However, in the context

of REPASSISTOR, exceptional state specifically denotes an

exception that is recorded in the log instead of in the software.

It corresponds to a single bug, as only such an exception

can be extracted from the log and can indicate a certain

error. After obtaining the test events and exceptional state,

REPASSISTOR transforms them into a specific model as a

basis of the next guidance. To facilitate bug reproduction, a

conversational agent is employed to guide users in exploring

the test events accurately, helping to reproduce the exceptional

state. At present, REPASSISTOR is developed based on the

Android with Android Debug Bridge [23].

REPASSISTOR primarily consists of three processes: model
transformation, guidance generation, and reproduction guid-
ance. Model transformation tackles complex automated testing

logs first. Automated testing logs contain various data such as

steps, screenshots, exception records, and other pertinent infor-

mation. To make the data more manageable and user-friendly,

standardization is applied. Once the data is standardized, the

transformed model is structured as a multilateral directed

graph. In this graph, nodes represent application activities or

the exceptional state, while edges signify test events. A path

from the first page to the exceptional state represents a possible

reproduction guidance, and the goal of REPASSISTOR is to

navigate developers from application launch, through a series

of operations to reach the final exceptional state. This graphical

data structure simplifies navigation through the data, making

path generation guidance easier. An illustration of a model is
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shown in the Figure 3.
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Figure 3: The multilateral directed graph for navigation.

REPASSISTOR employs a shortest-path strategy based on the

transformed model. This involves monitoring the developer’s

application user interface in real time, estimating their po-

sition, and dynamically calculating the guide path for bug

reproduction. The reproduction guidance is executed by an

integrated, user-friendly interactive system that engages devel-

opers to provide precise and concise guidance. This interactive

system not only simplifies the process but also enhances the

overall user experience, making it easier for non-professional

developers to follow the instructions for bug reproduction.

The entire operation process of REPASSISTOR can be viewed

in Figure 4. In this section, we will delve into the development

of REPASSISTOR in greater detail, elucidating its practical

applications in the realm of software testing.
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Figure 4: The process of the REPASSISTOR

3.1. Model Transformation

Model transformation contains three parts: data standardiza-
tion, page similarity calculation, and model building. These

phases work together to convert automated testing logs into a

structured model. The structured model can be used to guide

developers in reproducing bugs.

3.1.1. Data Standardization: The primary goal of data stan-

dardization is to process and normalize the automated testing

log data, converting it into a format suitable for model transfor-

mation. Automated testing logs can be generated from multiple

sources, including different testing tools and platforms. Data

standardization is crucial for REPASSISTOR to adapt to logs

generated by various automated testing tools. This adaptability

allows REPASSISTOR to remain independent and decouples it

from certain specific testing tools.

Testing logs should include test events, runtime screenshots

(used for subsequent page merging), and exceptional state.

These logs are then standardized into linked lists, where all

nodes, except the last one, represent screenshots. The final

node denotes the exceptional state, and the links signify test

events. The linked list illustrates the transition relationships

between user interfaces, allowing users to navigate between

screenshots by following the test events until the exceptional

state is reached. The structure of the linked list provides

convenience for the model building, making it easier to work

with the data in the next phases.

Additionally, data normalization includes the process of ex-

tracting widgets from application screenshots. During guid-

ance, the specific content of the operation needs to be dis-

played to the developers, involving widgets. For example, in

the case of clicking the ”add” button, the specific style of the

add button must be known in order to convey the detailed

operation to the developer. During data normalization, the

Canny algorithm [24] is used to detect the edges of widgets

and extract them from the screenshots.

3.1.2. Page Similarity Calculation: Page similarity calcu-

lation involves identifying all application screenshots and

assessing their similarity. The concept behind this method is

frequently utilized for managing application interfaces, such as

in the processing of crowdsourced testing reports [25], [26].

Accurate similarity measurements are vital for merging similar

pages and reducing the complexity of the final model. The

overall similarity can be calculated by the following methods.

Computer vision method. The traditional correlation matching

method of traditional CV is employed to obtain matching

coefficients between application screenshots [27]. These co-

efficients serve as a preliminary measure to determine the

similarity of pages. This method is relatively fast and can

provide a rough estimation of similarity. Let the matching

score of the two screenshots be denoted as α.

Deep learning method. DL techniques are used to calculate the

similarity between two application screenshots in our work.

We utilize VGG16 [28], a classic deep convolutional neural

network (CNN) model, to determine the similarity. The images

are input into the CNN to obtain their embedding vectors, and

the distance is represented by the Euclidean distance between

these vectors. The similarity is expressed as 1 minus the

distance. This approach provides a more accurate and robust

similarity compared to the traditional CV method. Let the

similarity obtained by DL be denoted as β.

3.1.3. Model Building: The model building process leverages

the previously calculated similarity to evaluate the resem-

blance between the pages and perform the merging operation.

The merging operation combines two pages into one, and

all attributes of the original pages, such as screenshots and

extracted widgets, are preserved. The merging criterion is that
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one similarity value of the two screenshots must surpass a

specific threshold, with similarity obtained by traditional CV

being considered first. The specific merging method can be

seen in (1). This logic allows the traditional CV method to

short-circuit the formula, reducing the computational load.

Through experimentation, we set the similarity threshold at

0.9 and 0.8 for traditional CV and DL. The merging operation

folds two different nodes in the linked list into one, and the

original links will be reconnected. Then, more nodes will be

folded in. Continual merging operations will eventually form

a graph, which is the target model. These threshold values

ensure that only highly similar pages are merged, reducing

the risk of merging unrelated pages.

Merging =

⎧⎨
⎩

True, α > thresholdCV

True, β > thresholdDL

False, otherwise
(1)

For two pages meeting the merging requirement, a straightfor-

ward reconnection of the links in the linked list is executed to

construct the model. This process results in a simplified model

that retains the necessary information for reproducing the bugs,

while eliminating redundant data. Merging similar pages also

reduces the cognitive load on developers, as some actions that

do not change the page are linked to the same page. Their

priority is reduced and developers will avoid these low-priority

test events. The algorithm is presented in Algorithm 1.

Algorithm 1: Model Transformer

Input: Automated Testing log log
Output: Transformed Model

1 extract actions A in log
2 extract screenshots S in log
3 extract error e in log
4 initiate linked list L
5 initiate first node node
6 L.add(node)

7 foreach screenshot ∈ S do
8 initiate page
9 page.screenshot ← screenshot

10 page.action←A.findAction(screenshot)
11 node.next←page
12 node←page
13 end
14 remove the first node in L
15 foreach ni ∈ L do
16 foreach nj ∈ L do
17 if ni is similar to nj then
18 mergePages(ni, nj)

19 end
20 end
21 end
22 node.next←e
23 return L

The final established model is a directed multigraph with

(potentially) self-loops. This directed multigraph illustrates the

transition relationships between activities of an application,

enabling the application to be traversed from the initial page to

the final exceptional state through a series of test events. This

feature serves as the foundation for guiding users to reproduce

bugs in subsequent stages. With the model, developers can

follow a structured, guided approach to reproducing bugs.

3.2. Guidance Generation

Guidance generation is the core of REPASSISTOR, which

generates guidance paths and updates them in real time. The

paths are generated based on the developer’s actions, they can

efficiently guide them in reproducing exceptional states.

To achieve guidance generation’s functionality, real time state

monitoring and path generation are essential. Initially, the

guidance generation starts in the standby state and generates a

guidance path from the initial page to the exceptional state

according to the shortest path first strategy. Afterward, it

monitors the developer’s actions, detects their position after

each action, and updates the guidance path in real time.

When developers struggle to reproduce the exceptional state,

guidance generation displays the guidance path to developers

by the conversational agent.

During the reproduction process, unexpected situations may

occur. Only the pages reached and the actions performed

during automated testing are recorded, which is obviously not

comprehensive. This record is not complete and does not cover

every possible scenario. In practice, developers may perform

unknown test events and reach pages that were not accounted

for during the automated testing phase. This can lead to gaps

in the reproduction process.

We refer to these instances, where developers reach unrecorded

pages, as ’Missing’. This term indicates that developers oper-

ated widgets of the software that have not been captured in

the automated testing process. These ’Missing’ states can be

due to a variety of reasons, such as unexpected user behaviors,

overlooked scenarios in the automated testing process, or even

changes of the software’s environment that have not happened

during testing. These issues are difficult to avoid.

Furthermore, once the guidance process begins, developers

may misunderstand REPASSISTOR’s guidance intention. This

misunderstanding can lead to unexpected actions being per-

formed, causing developers to depart from the planned guid-

ance path. We refer to this state as ’Deviation’. ’Deviation’

represents developers deviating from the expected guidance

path REPASSISTOR gave. These deviations can potentially

lead to the failure of reproduction.

Based on the discussion above, this section will introduce

guidance generation from three perspectives: guidance state

switching, monitoring mechanism, and guidance methods.

3.2.1. Guidance State Switching: To guide developers ef-

ficiently and accurately in reproducing exceptional states,

guidance generation has two states, including standby state

and guiding state. In the standby state, developers explore

the application freely, attempting to reproduce the exceptional

state by analyzing test logs or based on their own experience.
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There are two ways to enter the guiding state from the standby

state: requesting guidance actively or reaching a ’Missing’

state. The first way means developers recognize that they

have difficulty reproducing the exceptional state and require

additional assistance to navigate the process. The second way

means that despite developers’ confidence in reproducing the

exceptional state on their own, they seem unable to do so.

Both cases need to change the state to guiding. In the guiding

state, users receive real time guidance prompts from guidance

generation via the conversational agent. This interactive ap-

proach allows developers to follow step-by-step instructions,

which can greatly increase the possibility of reproducing the

exceptional state. Additionally, developers can report whether

the guidance is successful, providing feedback for improving

the guidance generation system. More user-friendly guidance

can be provided by the mechanism of switching the state.

3.2.2. Monitoring Mechanism: Guidance generation needs

to determine the developer’s position in the model to update

the guidance path and detect the developer’s state. This is

crucial for providing accurate and timely instructions to the

developer. Guidance generation can read the developer’s oper-

ation on the device as a trigger to update the current position.

When a new action is performed, a new transaction to change

position occurs. The logic for updating the position is similar

to the page merging logic in model transformation, which

is done by calculating similarity. The difference is that the

thresholds are reduced, from 0.9 and 0.8 to 0.9 and 0.7. The

adjusted thresholds allow for greater flexibility in recognizing

the developer’s current position within the model. If the current

page’s similarity to all pages in the model is below the

threshold, mark the developer’s state as ’Missing’ instead of

creating a new page. This monitoring method ensures the real

time performance of guidance.

3.2.3. Guidance Method: REPASSISTOR adopts the most

straightforward path-finding method, the shortest-path strategy,

to attempt to generate the guidance path. This strategy is based

on the principle of efficiency, aiming to minimize the number

of test events a developer needs to reproduce the exceptional

state. The starting point of this path is typically the initial page

of the model, which represents the point where developers

begin reproducing. The endpoint, on the other hand, is the

exceptional state, with the connections between nodes repre-

senting test events. However, as mentioned earlier, developers

may enter abnormal states, ’Deviation’ and ’Missing’.

When a developer enters a ’Deviation’ state, the guidance

generation process recalculates the fastest way to return to the

original guidance path. This recalculated path is then appended

to the original guidance path, creating a new guidance path.

This adaptive approach is designed to help developers recover

from the abnormal state and continue their reproduction. It’s

a dynamic solution that solves the unpredictable state and

provides a mechanism for correction.

In the case of a ’Missing’ state, the guidance generation

process instructs the developer to return to the last recorded

position. This approach is designed to bring the developer back

within the model’s control, ensuring that they remain within

the scope of the model. The full algorithm of the guidance

method is detailed in Algorithm 2.

Algorithm 2:
Input: Guide Model model,User Monitor monitor

1 initiate GG as Guide Generation

2 initiate guide path

path ← model.getPath(model.first,model.ES)

3 initiate position as model.first

4 while True do
5 monitor.acquireLock()

6 if monitor.getPosition() �= position then
7 position←monitor.getPosition()

8 if position not in model then
9 GG.state←MISSING

10 end
11 else if position deviated from path then
12 GG.state←DEVIATION

13 extraPath←model.getPath(position,path.first)

14 end
15 else
16 path←model.getPath(position,model.ES)

17 end
18 end
19 monitor.releaseLock()

20 end

This algorithm provides an approach to handling both nor-

mal and abnormal states. It guarantees the robustness and

adaptability of REPASSISTOR, capable of handling a wide

range of scenarios and ensuring that developers can accurately

reproduce exceptional states.

3.3. Reproduction Guidance

In REPASSISTOR, the reproduction guidance process is re-

sponsible for directly interacting with users and controlling

the entire guidance process. The complete process is shown

in Figure 6. It can transform the real time guidance paths

generated by guidance generation into a more readable form

and display them to developers. It can also convey the

developer’s intentions for guidance generation. The core of

reproduction guidance is a conversational agent. Some events

such as sending guidance and asking for results are defined

for the conversational agent. The triggering logic is managed

by guide generation. We also added some dialogue rules in the

testing domain, such as initiating guidance and conveying test

results to the conversational agent. By the defined events and

rules, we enabled the conversational agent to directly guide

developers in reproducing the exceptional state.

After starting, the developer tests on their own without any in-

struction from reproduction guidance, while guidance genera-

tion enters the standby state. When developers actively request

guidance or guidance generation determines that developers

are unable to reproduce the exceptional state independently,

reproduction guidance begins providing guidance. It presents
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actions and the application’s expected behavior to developers

when guiding, where actions include the type of operation

and the widget. There are two ways to guide developers: full

path and step by step. Reproduction guidance first presents

the full guidance path obtained from the guidance generation

process to the developers, allowing them to have a basic

understanding of the test events. Then, reproduction guidance

obtains the developer’s current position in real time from

guidance generation to extract the details of the next action

and informs the developer, as can be seen in Figure ??.

Reproduction guidance prompts the developer that he or she

should perform test event 1 to reach page B. When the next test

event can reach the exceptional state, reproduction guidance

asks developers whether the reproduction was successful and

records this reproduction as a complete guidance process.

Figure 5: The real-time guide.

Similarly to guidance generation, developers may enter two

abnormal states: ’Deviation’ and ’Missing’. In the ’Devia-

tion’ state, the reproduction guidance plays a crucial role in

navigating developers back to the planned guidance path. It

does this by first alerting developers that they have deviated

from the guidance path. This alert serves as a checkpoint,

allowing developers to realize that they have deviated and need

to recover. Then reproduction guidance re-routes developers

with the new guidance path in a step by step manner, making

it easy for developers to follow and return to the correct

path. On the other hand, the ’Missing’ state represents a more

severe deviation, where developers have accessed unrecorded

pages and are completely off the planned path. In this state,

the reproduction guidance alerts developers that they may

have completely deviated and sends them the last recorded

page, asking them to return on their own. Once developers

have returned to a recorded page, the reproduction guidance

resumes its role in guiding them. It finds a new guidance path

based on the current page and guides developers along this

path, ensuring that they can continue the reproduction process.

Through the carefully designed user-friendly conversational

agent, reproduction guidance can serve as a bridge for com-

munication between developers and REPASSISTOR and thus
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Figure 6: The flow of reproduction guidance.

complete the guidance process.

4. EXPERIMENTS

The accuracy of Model Transformation and the accuracy

coupled with the efficiency of Guidance Generation are critical

factors of REPASSISTOR. To evaluate these key aspects, we

focus on the following points:

(i) Perceived usefulness and usability of the REPASSISTOR;

(ii) Accuracy of REPASSISTOR in model transformation and

guidance generation; (iii) Quality of the reproduction guid-

ance.

To evaluate these attributes, we conducted experiments on

various applications, aiming to answer the research questions:

RQ1: How accurate is the model transformation?

RQ2: How accurate is the reproduction guidance?

RQ3: What is the efficiency of the reproduction guidance?

To address the research questions, we selected a set of Android

applications (refer to section 4.1) and employed Monkey [14]

to collect logs and screenshots. These apps are widely used

open-source applications in the area of automated testing,

each corresponding to some logs that records bugs discovered

through the testing scripts using Monkey strategy. Subse-

quently, we extracted the metadata of each application, such

as the total number of exceptional states per app. We then

identified relevant evaluation metrics and established a method

to compute them using the experimental data (refer to Section

4.2). We applied REPASSISTOR to each app and collected the

experimental data, including model and guidance information.

Afterward, we analyzed the evaluation metrics and evaluated

REPASSISTOR’s behavior during the model transformation and

guidance generation. The results of this evaluation, as well as

our discussion, are detailed in Section 4.3.

4.1. Experimental Setup

To evaluate the effectiveness of REPASSISTOR, we chose eight

Android apps, each representing a unique domain and pos-

sessing a variety of bugs. Automated test logs were procured

by Monkey, which served as our automated testing tool. By
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analyzing the meta information derived from Monkey’s test

logs and screenshots, we established the standard guidance

path. Detailed records are presented in Table 1.

To guarantee the reliability of the datasets, we verified the

meta records on both an Android virtual machine and a real

device after obtaining the test logs.

Table 1. Original test log of apps and bug dataset

App ID Events Last event

anki

1 18 tap

2 29 tap

3 32 tap

4 311 back

budget watch

5 26 tap

6 21 tap

7 230 longtouch

8 99 tap

myExpenses 9 31 tap

privacy friendly notes 10 43 tap

omninotes
11 11 tap

12 19 tap

runnerup

13 1 tap

14 8 back

15 6 tap

16 22 tap

17 84 tap

18 152 tap

passwordmaker

19 9 tap

20 81 input

21 46 tap

22 7 input

23 59 back

24 3 longtouch

25 6 tap

timber

26 119 back

27 34 tap

28 75 input

We processed each automated test log to obtain testing data,

including steps, screenshots, exception records, and other rele-

vant information. Once the data was collected, we transformed

the data into multilateral directed graphs, which facilitated

the guidance path generation. Subsequently, we calculated the

shortest path and documented the paths. We then conducted

an experiment for each bug, with the guidance provided by

REPASSISTOR recorded in Table 2. As developers may seek

help from a different starting point compared to the original

test log, we noted whether the first test event was the same.

By comparing the records from the original logs with those

from REPASSISTOR, we evaluated the tool’s performance and

analyzed the research questions.

4.2. Experiments design

4.2.1. RQ1: The accuracy of REPASSISTOR’s model trans-
formation.: The accuracy of model transformation is funda-

mental to effective reproduction guidance. The model should

Table 2. Guidance from REPASSISTOR

App ID Guidance Same start

anki

1 3 N

2 5 N

3 22 Y

4 95 N

budget watch

5 9 Y

6 7 Y

7 3 Y

8 3 Y

myExpenses 9 5 Y

privacy friendly notes 10 2 Y

omninotes
11 1 N

12 1 Y

runnerup

13 1 Y

14 1 Y

15 2 Y

16 3 Y

17 8 Y

18 2 Y

passwordmaker

19 2 Y

20 1 Y

21 2 Y

22 1 Y

23 3 Y

24 1 Y

25 1 Y

timber

26 1 Y

27 1 Y

28 1 Y

contain complete information extracted from the automated

testing logs, accurately documenting the details of each test

event. To quantify the accuracy of the model transformation,

we employ the metric of model completeness rate. This metric

is calculated as the ratio of applications for which all models

are complete to the total number of applications. This measure

serves to provide an objective evaluation of the model’s

comprehensiveness and accuracy, ensuring the reliability of

the reproduction guidance.

4.2.2. RQ2: The accuracy of REPASSISTOR’s reproduction
guidance.: RQ2 assesses whether the guidance accurately

represents the correct sequence of test events and effectively

directs developers to the desired exceptional state. We evaluate

the accuracy of guidance via the guidance correctness rate. The

guidance provided by REPASSISTOR is considered correct if

it successfully navigates to the exceptional state and triggers

the exceptional state. The guidance correctness rate quantifies

the proportion of successful guidance and is calculated as the

ratio of successful guidance instances to the total number of

guidance attempts. This metric provides a valuable measure

of the guidance’s reliability in correctly leading developers to

the target exceptional state.
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4.2.3. RQ3: The efficiency of REPASSISTOR’s reproduc-
tion guidance.: While RQ2 assesses the accuracy of the

generated guidance, RQ3 primarily focuses on its efficiency.

The efficiency of the guidance is assessed by comparing the

length of the guidance path to the actual path derived from

the original test log. We calculate the difference between the

number of test events in the original test log and the number

of test events in the guidance. This difference is then divided

by the total number of test events in the original test log,

providing an evaluation criterion for efficiency. The larger this

value, the greater the efficiency of the guidance.

Efficiency =
origin− guidance

origin
(2)

4.3. Results and analysis

we provide a comprehensive presentation and discussion of

our evaluation results for each RQ.

4.3.1. RQ1: The accuracy of REPASSISTOR’s model trans-
formation.: We obtained a total of 28 models by constructing

models for 8 apps. We then traversed each page of each

model, observing for any blank pages or incorrect test events to

determine the accuracy of the model. Through experiments, we

found the app ’timber’ contained unrecorded operation coordi-

nates, while the models for the other applications were correct.

Consequently, the model completeness rate was high, peaking

at 87.5%. This high rate of completeness signifies that the

model transformation exhibits a high degree of accuracy. This

suggests that REPASSISTOR is highly reliable in transforming

automated test logs into models which in turn enhances the

quality of the reproduction guidance.

4.3.2. RQ2: The accuracy of REPASSISTOR’s reproduction
guidance.: REPASSISTOR successfully documented a total of

28 complete guidance instances. As demonstrated in Table 3,

seven instances had triggering test events that were different

from the original logs, resulting in a path correctness rate

of 75%. Within the seven instances of incorrect guidance,

five instances featured incorrect interfaces during the trig-

gering of the exceptional state, one instance presented an

incorrect operation, and one instance manifested both errors.

Despite these discrepancies, the path correctness rate remains

considerably high, suggesting that REPASSISTOR possesses a

robust capability to parse automated testing logs accurately

and provide precise guidance.

4.3.3. RQ3: The efficiency of REPASSISTOR’s reproduc-
tion guidance.: In RQ3, we compared the number of test

events in the original logs with those in the corresponding

guidance to evaluate the efficiency of the guidance. We first

eliminated cases with different starting points, resulting in

16 guidance instances that met this requirement. For these

16 instances, we employed equation (2) to calculate the

efficiency. The results of this calculation are displayed in Table

4. The overall efficiency achieved was 76.78%, suggesting

a high level of efficiency in the majority of the guidance

instances. This implies that compared with the original test

logs, REPASSISTOR can avoid some ineffective operations,

Table 3. Accuracy of reproduction guidance
App ID Same end Validity

anki

1 Y Y

2 Y Y

3 Y Y

4 Y Y

budget watch

5 Y Y

6 Y Y

7 Y Y

8 Y Y

myExpenses 9 Y Y

privacy friendly notes 10 Y Y

omninotes
11 Y Y

12 Y Y

runnerup

13 Y Y

14 Y Y

15 Y Y

16 Y Y

17 Y Y

18 Y Y

passwordmaker

19 Y N

20 Y N

21 N Y

22 N Y

23 Y Y

24 N Y

25 Y Y

timber
26 N Y

27 N N

28 N Y

thereby enhancing the efficiency of the bug reproduction

process. These results indicate that REPASSISTOR is not only

precise in its guidance but also efficient, resulting in quicker

bug reproduction.

5. DISCUSSION

Limitations. The current version of REPASSISTOR has certain

limitations. Model transformation is entirely based on auto-

mated testing logs, which inherently maintain its limitations

[29], [30], such as incorrect error records and incomplete

reproduction actions. The error information in the original

logs might be perplexing enough that REPASSISTOR cannot

extract valuable information from it. This can be addressed

by analyzing, correcting, and supplementing the testing logs,

which have not been integrated into the current REPASSISTOR.

REPASSISTOR also struggles to find effective paths to ex-

ceptional state when the application is too complex, or the

guiding path is too long. Some applications are relatively

complex, and the pages traversed to trigger a bug may be

similar or interconnected (e.g., a bug can only be properly

triggered when navigating from a specific page). Under these

circumstances, the effectiveness of the REPASSISTOR’s guid-

ance can obviously decrease. This is due to various factors,

including the validity of application screenshot comparison,
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Table 4. Efficiency
App ID Events Guidance Efficiency
anki 3 32 22 31.25%

budget watch

5 26 9 52.94%

6 21 7 66.67%

7 230 3 98.70%

8 99 3 96.97%

myExpenses 9 31 5 83.87%

privacy

friendly notes
10 43 2 95.35%

omninotes 12 19 1 94.74%

runnerup

13 1 1 0%

14 8 1 87.5%

15 6 2 66.67%

16 22 3 86.36%

17 84 8 90.48%

18 152 2 98.68%

passwordmaker
23 59 3 94.91%

25 6 1 83.33%

total 52.44 4.56 76.78%

and path selection strategy. When screenshots of application

UI are quite similar, it becomes difficult to efficiently compare

images [31], leading to different Activities being recognized as

the same. This can reduce the effectiveness of the transformed

model. The path selection strategy, which currently uses the

simplest shortest path strategy, may also impact this process.

Some exceptional states might require special paths to reach,

and these special paths may be a subset of the automated

testing logs. As a result, the shortest path may be ineffective

for complex bug reproduction. To minimize this issue, it is

necessary to analyze potential preceding events that lead to

the bug and guide users to complete those events before

proceeding with the final reproduction process. This may be

considered in our future research.

Lastly, the application scope of REPASSISTOR is confined

to bugs already discovered by automated testing tools. Bugs

identified through other means are not addressable using

REPASSISTOR, as the lack of testing logs. Moreover, some

complex actions within applications, such as rotation, cannot

be recorded and guided by REPASSISTOR.

Threats to validity. The primary threat to the validity of this

study is the generalizability of the selected application and

corresponding automated testing logs. Applications come in

many types, some of which are extremely complex and unique,

such as games. REPASSISTOR’s capabilities have not been suf-

ficiently confirmed for these special types of applications. Not

only the applications but also the automated testing logs can

threaten the validity. Most of the logs used in this study came

from random testing methods like Monkey, which inherently

has some limitations. It may generate many invalid actions,

which can disrupt the guidance path, causing a decrease in

reproduction guidance efficiency.

At the current stage, REPASSISTOR has not yet undergone user

studies and comparative experiments with similar tools (e.g.,
RecDroid) to verify its assistance to developers. This part can

be supplemented in subsequent research.

Chatbots. Chatbots are now widely used in software en-

gineering [32], [33], [34]. In the software testing domain,

they mainly assist developers in understanding testing results,

helping them complete simple testing tasks or writing testing

reports [15] [16]. The main advantage of chatbots is their user-

friendliness, which can compensate for developers’ lack of

relevant professional knowledge [35], [36].

6. RELATED WORK

The related work primarily focuses on automating bug re-

production, with the central theme being the reproduction of

user bug reports or error reports. ReCDroid [20] analyzes bug

reports to reproduce bugs. It uses NLP technology to extract

key steps from reports. It then compares the target widget

in the steps with the elements extracted from the application

source file to confirm the targets of actions, thereby automating

the reproduction based on the report. Yakusu [37] transforms

user-reported bugs into test cases by extracting and identifying

widgets from the mobile application’s source code. It processes

bug reproduction steps using NLP technology and matches

widgets with UI elements through deep learning techniques.

Finally, it generates a test case library using multiple strategies,

attempting to reproduce the described bugs.

In addition to bug reports, studies are attempting to repro-

duce bugs using information from exception stacks or system

information [38], [39]. CrashLocator [9] uses static analysis

to expand the crash stack and attempts to find suspicious

functions. The suspicious function is the key to reproducing

the bug. All these methods extract useful content from am-

biguous or complex information to automate bug reproduction.

However, these methods have not considered the key factor,

the developers’ ability during bug reproduction.

Besides, GIFDroid [40] incorporates multimedia data into the

research of bug reproduction. GIFDroid identifies keyframes

in videos that reproduce bugs and compares them with the

actual application in order to generate the reproduction steps.

Similar to REPASSISTOR, GIFDroid employs image compari-

son techniques to find widgets and activities. However, it also

overlooks the crucial role of developers.

Utilizing chatbots to assist in software testing is another focus

of related research. BURT [15] employs chatbots to help

developers refine their bug reports. Similar to REPASSISTOR,

it first loads an application model. It offers potential actions

for developers to choose according to the model. Based on

the developer’s selection, it recommends new candidates to

assist developers in the completion of the bug report’s main

content and automatically generate the report. BURT’s assisted

report-writing approach simplifies developers’ work. Similarly,

FUSION [16] uses dynamic analysis to obtain application

GUI widgets, assisting developers in completing error reports.

However, the primary objective of these methods is to aid

developers in reporting bugs rather than reproducing them.
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They are complementary to REPASSISTOR and can be used

together to improve reproduction ability.

There are a considerable number of related studies on au-

tomated testing tools [41], [42], [43], [44]. Their goal is to

replace or assist manual testing and make the testing process

more efficient. They usually target high coverage or more

software bug detection by employing complex algorithms and

models. These automated testing tools provide the foundation

for REPASSISTOR. Many studies of them use GUI features

for automated testing. The log generated by these works can

easily be adapted to REPASSISTOR with data normalization.

When processing testing logs, REPASSISTOR employs DL and

CV techniques for handling application images. Likely, Wang

et al. [45] use deep learning technologies to process reports

in their work. Yu et al. [25] applies deep learning techniques

to individual components for feature extraction in test reports.

Nguyen et al. [46] employed CV technology to analyze GUI

screens and manipulate their widgets.

7. CONCLUSION

This paper introduces REPASSISTOR, a tool that aids develop-

ers in reproducing bugs based on automated test logs with an

interactive method. REPASSISTOR first transforms the auto-

mated test logs into an application transition linked list. Then,

utilizing DL and traditional CV techniques, REPASSISTOR

analyzes the screenshots of the automated test logs to compute

their similarity. REPASSISTOR merges corresponding pages

based on similarity and collapses the linked list into a graph.

By utilizing the conversational agent, REPASSISTOR monitors

the developers’ positions, provides guidance, and assists them

in reproducing bugs. We also conducted an experiment on

REPASSISTOR, demonstrating its effectiveness in enhancing

developers’ behavior of bug reproduction.
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