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Abstract—In software testing, a protective measure to prevent

faults in the code is to ensure that the behavior on the bound-

ary between the sub-domains of the input space is correct.

Therefore, designing test cases with boundary value analysis

(BVA) can detect more errors and improve test efficiency.

This paper presents an ML (machine learning) based approach

to automatically generate boundary test cases. Our approach

is twofold. First, we train an ML-based discriminator that

determines whether a boundary exists between two test inputs.

Second, using the outputs of the discriminator, we create test

inputs based on Markov Chain Monte Carlo. We conduct

experiments to compare the fault detection capabilities of

the ML-based approach with concolic testing and manually-

performed boundary analysis. Results indicate that the ML-

based method outperforms the manually-performed boundary

analysis in four of the seven programs tested and concolic

testing in three of the seven programs tested.

Keywords–software testing, random testing, boundary value
analysis, Markov chain Monte Carlo, neural network

1. INTRODUCTION

Software testing, which is crucial for verifying the reliability

of software systems, is the execution of software systems

to uncover faults. Static testing and dynamic testing are the

two main divisions in software testing. Static testing entails

looking into program codes and the documents that go with

them without actually running the program. One of the typical

methods for static testing is symbolic execution. On the other

hand, dynamic testing, which is frequently used for software

testing, confirms the correctness of a program by examining

the dynamic behavior while the program is run with particular

inputs. We concentrate on dynamic testing in our study. In

dynamic testing, the creation of test cases is crucial for

ensuring the quality of the product. The test case consists of

test inputs and their expected outcomes by the test oracle. A

common procedure of dynamic software testing is (i) to run

the software under test (SUT) with the inputs of test cases, and

(ii) to compare the test outcomes with the expected ones. The

SUT has bugs if the test result differs from what was expected.

Furthermore, from the perspective of software reliability, the

software reliability may increase as the quantity of test cases

increases. However, a large number of test cases cause a large

amount of cost on software testing. Thus it is important to

generate the high-quality test suite that has the high probability

of bug finding with the small number of test cases.

Boundary value analysis (BVA) is one of the most popular

methods to create the high-quality test cases effectively. The

boundary value is defined as an input of software that changes

the behavior of software with even a little change, and BVA

extracts test inputs from the boundary values. In the context

of black-box testing, BVA extracts the test inputs from the

boundaries of equivalence partitions. In the BVA with white-

box testing, the test inputs can be determined from branch

and loop conditions on source codes. It is empirically known

that many programming errors often occur on the boundary of

the input domain. One protective measure to prevent vulnera-

bilities and failures in the code is to ensure correct behavior

on the boundaries between the input space sub-domains [1].

Therefore, compared with other methods, by designing test

cases with BVA, more boundary errors could be detected and

the test efficiency is higher.

On the other hand, since BVA requires the analysis of spec-

ifications or source codes, the effort of BVA is not small. In

the case of black-box testing, testers identify the equivalence

partitions or sub-domains by analyzing the specification using

partition analysis (PA), and create test inputs from the bound-

ary between sub-domains [2]. This process generally relies on

manual analysis. Since the complexity of the software system

increases, software has large input spaces, heavily or non-

linearly dependent inputs, and complex and highly structured

inputs. Thus it is not feasible to manually analyze the input

domain and the boundary values [1].

In recent years, there are several researches on the automation

of BVA. Jeng and Forgacs [3] proposed a semi-automatic

method that mixed the dynamic search method and the al-

gebraic manipulations of the boundary conditions to generate

test data for boundary value testing (BVT) more efficiently.

Zhao et al. [4] considered string inputs and proposed a novel

approach for automatically generating test points to better

find problems at borders in code with string predicates. Ali

S et al. [5] extended their search-based test data generation

method in model-based testing, using a solver to automatically

generate boundary values based on a set of heuristics. Feldt

and Dobslaw [6] applied the idea of derivative in mathematical

parlance to detect the maximum “change” area by combining

the input and output distances, that is, the detection boundary.

This method uses the program derivatives as a fitness function

in search-based software testing for automated BVA. In order

to generate boundary test cases through the above techniques,

it is necessary to have the specification that clearly states the

boundary formally.

This paper considers the BVA in white-box testing. The BVA

in white-box testing focuses on a pair of input and its execution

path, and the boundary is defined as the input that changes the
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execution path in some sense1. Compared to the BVA in black-

box testing, one of the difficulties of BVA in white-box testing

is to identify feasible test inputs. On BVA in black-box testing,

we implicitly suppose that the input variables on specifications

are independent, and then the boundary can be obtained from

combinations of the boundary values for each input variables.

On the other hand, input variables are dependent; for example,

the program includes a condition

x + y <= 10

for two input variables x and y. Then the boundary of this

condition cannot be determined only by either of x and y. That

is, even if the boundary is detected from source codes, we need

to solve the problem of finding feasible input values. For this

problem, Zhang et al. [7] used the SMT (satisfiability modulo

theories) solver. However, SMT has weaknesses in scalability.

In other words, it is difficult to apply the SMT-based approach

to the large-sized programs.

In the paper, we propose another approach for the BVA in

white-box testing, i.e., ML (machine learning) based approach.

The idea behind our approach is twofold. First we train an

ML-based discriminator that answers whether two test inputs

have the same execution path or not. Second we generate

test inputs based on Markov Chain Monte Carlo (MCMC)

with the outputs of discriminator. Zhou et al. [8] first uti-

lized MCMC methods for software random testing. MCMC-

RT (MCMC Random Testing) uses the prior knowledge of

software testing and is based on the statistical background

of the probability of failure described by Bayesian inference.

Our idea is an extension of MCMC-RT by introducing the

ML-based discriminator. Our method needs the information

on execution paths only, and does not require any program

information identifying conditions.

The rest of this paper is organized as follows. Section II

introduces the Markov chain Monte Carlo and describes the

proposed method, illustrating how to use MCMC and ML

models to automatically generate boundary test cases. Section

III is the exploitation of ML model. Section IV presents

experiments in a simple program and seven real programs.

Finally, in Section V, we discuss the results of experiments

and future works.

2. GENERATION OF BOUNDARY VALUES

2.1. Markov Chain Monte Carlo (MCMC)

MCMC is a general technique for efficiently generating

samples drawn from a probability distribution with high-

dimensional space. The idea of the MCMC is to simulate

an ergodic Markov chain whose stationary distribution is

consistent with a target distribution. The more steps of Markov

chain simulation, the more closely the distribution of the

sample matches the actual desired distribution.

It is significant to construct an appropriate Markov chain

when using the MCMC method to generate samples. Different

transfer construction methods will produce different MCMC

methods. At present, the commonly used MCMC methods

1The definition is formally given in Section III.

mainly include two Gibbs sampling [9] and Metropolis-

Hastings (M-H) algorithm [10]. Since Gibbs sampling is a

special case of the M–H algorithm. Here we only summarize

the M-H algorithm.
The M-H algorithm produces a Markov chain whose limiting

distribution is the target density π(x). Let x′ be a candidate

of the next state of Markov chain that is generated from a

proposal distribution Q(x′|x) where x is the current state of

Markov chain. This candidate becomes the next state of the

Markov chain with the following acceptance probability:

P = min

(
π(x′)Q(x|x′)
π(x)Q(x′|x) , 1

)
(1)

In practice, we generate a uniform random number U , if U
is less than or equal to the acceptance probability U ≤ P ,

the candidate is accepted, otherwise, the candidate is rejected.

After repeating this process for several steps, the sample x can

be regarded as a sample drawn from π(x).

2.2. MCMC for Boundary Values

Consider the MCMC for generating boundary values. As

mentioned before, MCMC is essentially a method to generate

samples from the target density π(x). Our idea is to estimate

the density function π(x) on the input domain, which rep-

resents the likelihood that whether x is a boundary value or

not. When π(x) is used as the target density of MCMC, the

samples generated by MCMC are expected to be boundary

values.
The key issue is how to estimate such a density function for

boundary value. As an example, we consider a program that

has only one input value x. If the program has one boundary,

the density function for boundary value is expressed as a

function with rapidly climbing and falling like in Fig. 1a. In

the sense of mathematics, it is a delta function, and it is not

easy to estimate such a function directly. On the other hand,

Fig. 1b shows the cumulative distribution of Fig. 1a. Although

it is a step function in the mathematical sense, it is possible to

approximate such a function by a continuous function like a

logistic function. If we obtain the cumulative distribution for

boundary value F (x), then the target density is approximated

as

π(x) =
F (x+ h)− F (x)

h
, (2)

where h is an arbitrary and sufficiently small value. Also, since

F (x) jumps at around the boundary, the value F (x+h)−F (x)
takes 1 when the test inputs x + h and x belong to different

equivalence partitions. Otherwise, if x + h and x are in the

same equivalence partition, F (x+ h)− F (x) becomes 0.
This idea is expanded to the case where high-dimensional

test input space. Let N(x, y) be the function meaning that

N(x, y) = 1 if inputs x and y are in the different equivalence

partitions. Otherwise, if inputs x and y are in the same

equivalence partion, N(x, y) = 0. Then the target density is

given by

π(x) =
1

m

m∑
i=1

N(x+ hi, x)

hi
, (3)
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Figure 1: The probability density and the cumulative distribu-

tion of boundary value.

where hi is a small vector to put a perturbation. Figure

2 illustrates our approach in two-dimensional space. In the

figure, there are two inputs a and b and one boundary. The

circles represent the radius R of perturbation. Since X ′ is

closer to the boundary than X , the likelihood that X ′ and

X ′+hi belong to the different equivalence partitions is higher

than X . That is, π(X ′) may be greater than π(X).

Based on the density function for boundary value π(x), the
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Figure 2: An example in two-dimensional space.

acceptance probability in the M-H algorithm becomes

P = min

(∑m
i=1

N(x′+hi,x
′)

hi
Q(x|x′)∑m

i=1
N(x+hi,x)

hi
Q(x′|x)

, 1

)
(4)

One of the purposes of generating boundary values is to

generate test cases for software testing. In this sense, it is

better that the generated boundary values cover the input

domain of the software. In the M-H algorithm, the proposal

distribution Q(x′|x) is frequently designed by searching inputs

close to the original (current) input x, i.e., the local search.

However, the local search cannot ensure the coverage of test

domain, and thus the paper considers the independent proposal

distribution that does not depend on the original (current)

input Q(x′). The typical example of such proposal distribution

is the uniform distribution on input domain. When we use

the uniform distribution on input domain, the acceptance

probability simply becomes

P = min

(∑m
i=1

N(x′+hi,x
′)

hi∑m
i=1

N(x+hi,x)
hi

, 1

)
. (5)

3. EXPLOITATION OF ML MODEL

3.1. Model Architecture

To generate boundary values, we need the function N(x, y)
that outputs whether two inputs x and y belong to the different

equivalence partitions. The simplest and direct approach is to

monitor concrete paths by executing software with two inputs.

However, since we need a number of executions of N(x, y) in

the scheme of MCMC, the direct approach is not appropriate
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Figure 3: The source code of En_testing.c.

in this case. The second way is to create the function N(x, y)
with the static analysis such as symbolic execution beforehand.

This method may be effective but the static analysis has a

limitation on scalability. In the paper, we exploit a machine

learning (ML) model to create the function N(x, y). The ML-

based approach is one of the data-driven approaches. The ML

model is trained from the data, and the model mimics the

trained data and interpolates unknown two inputs predicatively.

Although the training of model requires much computational

cost, the evaluation is done with less computation cost. This

property is appropriate for the function in MCMC scheme.

In the paper, we use a neural network (NN) to represent the

function N(x, y). NNs are multilayer perceptrons, including

an input layer or multiple hidden layers and an output layer.

All these units are connected to each other through links with

synaptic weights. These weights are updated as part of the

training process and reflect the information learned during the

training process. In our method, the input of the NNs is a set

of input pairs, such as the vector (x, x+ h) and the output of

the NNs is a label as a binary value indicating whether x and

y are in the same partition or not.

3.2. Training Data

Before using NNs prediction, we first need to train the NNs

with a set of training data. Since we focus on the white-box

boundary value where equivalence partitions are defined by

execution paths of program for test inputs, it is necessary to

Figure 4: The result of Gcov for En_testing.c.gcov.

define the equivalence of execution path based on the execu-

tion log. In addition, NN requires a number of training data,

and thus the training data collection should be automatically

executed. In the paper, we provide the approach based on Gcov

tool.

In white-box boundary value testing, we want to cover the

boundary values for comparison predicates. Each atomic

Boolean expression in the path condition is referred to here

as a predicate. Predicates could be Boolean variables, com-

parison predicates (>,>=, <,<=,=, �=), etc., and should not

contain any Boolean operator (such as ∧,∨,¬, etc.) [7]. Each

comparison predicate contains two branches, and each branch

has three states, marked as “1, 0, -1”. Suppose we have a

comparison predicate (a > 0), contains two branches: (a > 0)
and (a <= 0). For the branch in the program condition, when

the branch is executed and is taken (satisfied) one or more

times (if the condition is nested in a loop, or the function where

the condition is located is called multiple times, the branch

in the conditional expression may be taken multiple times),

We mark the state of this branch as “1”, when the branch is

executed but is not taken, we mark the state of this branch as

“0”, and if the branch is not executed, mark the state of the

branch as “-1”. For conditional branches in a program loop,

no matter how many times the loop is repeated, we mark the

state of the branch that triggered the loop as “1”. That is to say,
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when the branch is taken multiple times, the actual execution

path is different according to the different taken times. But

in order to facilitate the learning of the neural network, we

ignore the number of times the branch is taken, as long as the

branch is taken, its state is “1”.

Regarding the method of obtaining the initial training data

labels, we consider annotating source code to add instrumen-

tation and use the Gcov tool to extract the branch execution

information. Gcov [11] is a source code coverage analysis tool

that cooperates with GCC to implement statement coverage

and branch coverage testing of C/C++ files. Gcov annotates

the source code to add instrumentation and accurately counts

the number of executions of each statement in the program.

In our work, we use Gcov to write the branch execution

frequency to the output file when testing the program. The

branch information in the file is then extracted as the execution

path.

For example, Figure 3 is a simple C program for judging

whether the English examination passed. We assume that

the English examination consists of two parts; listening and

reading. The full score of each part is 100 points. To pass

the English examination, the following two conditions must

be satisfied:

(1) Both the listening score a and the reading score b are

greater than or equal to 50 points.

(2) The sum of listening score a and reading score b is greater

than or equal to 120 points.

Figure 4 shows the result of Gcov on running the

En_testing.c.gcov program with the input a = 45
and b = 65. We convert the “taken a (a>0)” to “1”

to represent that the branch is taken at least once, convert

the “taken 0” to “0” to represent that the branch is not

taken, and convert the “never executed” to “-1” to

represent that the branch is not executed, and the execu-

tion path of the program En_testing.c with the input

a = 45 and b = 65 is the combination of all branch ex-

ecutions; 1,0,1,0,1,0,1,0,0,1,-1,-1,-1,-1. Then

we obtain the label of input pairs by calculating whether the

execution paths corresponding to the two inputs are equal. If

they are equal, the label is 0 (there is no boundary between the

two inputs), and if they are not equal, the label is 1 (there is a

boundary between the two inputs). In this paper, we apply the

ML-based approach to the c language. For other languages,

we can apply this method by simply changing the way paths

are extracted.

4. EXPERIMENT

In this section, we present experiments to investigate the

effectiveness of ML-based approach. We conducted two sets

of experiments. One is to generate test cases for a simple

C program and compare the effects of various parameter

combinations. Another one is an experiment on several real

programs.

4.1. Fault detection ability

We use mutation testing to study the fault detection rate of test

sets. Mutation testing is a type of software testing in which

certain statements of the source code are changed/mutated to

check if the test cases are able to find errors in the source

code. In the experiment, we injected (seeded) several faults

into the program. Each seeded fault yields a faulty version.

For each test set generated in the experiments, we run the

whole test set on each faulty version and count the number of

killed mutations. The kill rate is calculated by Eq. (6).

kill rate =
the number of killed mutations

total number of mutations
(6)

We manually inject (seeded) 6 kinds of faults in the program

under test. Off-by-one bugs (OBOB) are a kind of faults when

some computation process uses some wrong value which is

1 more or 1 less than the correct value, and most boundary

faults are Off-by-one bugs [7]. The rest of faults contain five

common mutation operators [12]: constant replacement (CR),

relational operator replacement (ROR), arithmetic operator

replacement (AOR), scalar variable replacement (SVR), and

logical operator replacement (LOR). We use the execution path

and the output to determine if a fault is killed, that is, when

at least one test case has an execution path different from the

correct version, or at least one test case has an output different

from the correct version, the mutation is killed.

4.2. RT and ART

In the RT approach, we randomly generate a test set consisting

of n test cases and execute each mutated program with this

test set to study the fault detection ability.

ART is executed by the algorithm described in [13]. In

traditional ART algorithm, the executed set is incrementally

updated with the selected element from the candidate set

until a failure is revealed. However, to make the experimental

results of ART and MLBVA comparable, we changed the

experimental stopping condition of ART to generate n test

cases incrementally. For each mutation, the test case generation

process stops if the injected fault is detected when generating

the i-th (i ≤ n) test case, and the generated test set kills the

mutation. If none of the generated n test cases detect the fault,

the generated test set did not kill the mutation.

4.3. Experiment with a Simple C Program

In this experiment, we use a program En_testing.c de-

scribed in the previous section. Figure 5 is a conceptual

diagram of the boundaries. We injected (seeded) 25 faults into

the program. Among them, 14 faulty versions contain off-by-

one bugs (where we add/subtract 1 to the right-hand side of

comparison predicates), and the rest of the faults contain five

common mutation operators.

Design Parameters of NNs and MCMC: The NN in our

experiments is a fully connected NN (dense layers) with

one input layer, two hidden layers, and one output layer.

Each hidden layer has 64 units and the activation function

is ‘relu’. The input size of the input layer is 4. The output
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TABLE I: Kill rate of RT, ART and ML-based boundary value analysis (MLBVA).

method n=5 n=10 n=20 n=50
RT 0.28 0.36 0.36 0.4

ART 0.28 0.28 0.4 0.44

MLBVA (Dataset20000) 0.36 0.36 0.56 0.68

MLBVA (Dataset10000) 0.28 0.4 0.52 0.64

MLBVA (Dataset5000) 0.4 0.4 0.48 0.64
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Figure 5: Conceptual diagram of the boundaries.

layer has an output size of 1 and the activation function is

‘sigmoid’. In addition, the parameter learning rate and the

number of training epochs (one epoch is the cycle when an

entire dataset is passed forward and backward through the

neural network only once.) are set to 0.01 and 50, respectively.

In our experiments, we use three sets of initial training data,

which are randomly generated from the input domain. The size

of the dataset is 20000, 10000, and 5000, respectively, which

are marked as Dataset20000, Dataset10000, and Dataset5000.

Let f(x) =
∑m

i=1 N(x+hi, x), When both f(x′) and f(x) are

calculated as 0, we cannot judge which of the current sample

x and the candidate sample x′ is closer to the boundary. So

in the experiment, we directly use the probability value output

by the neural network as the value of f(x).

For MCMC, we use the uniform distribution as the proposal

distribution. We use MCMC model to generate n test cases

from input domain and examine the cases n = 5, n = 10,

n = 20, and n = 50. Selecting a point close to the boundary as

the initial value of MCMC is more conducive to generating the

boundary value. Therefore, we choose (49, 49) as the initial

value of MCMC. In our experiments, MCMC samples at each

step and stops until n test cases are generated. And the NNs

will be retrained for every 10 steps.

Results and Discussion: We use RT, ART, and ML-based

approach to generate test cases for a simple program under

test. Figure 6 shows the data distribution generated by RT.

Figure 7 shows the data distributions generated by ML-based

approach under parameters {n=5, n=10, n=20, n=50} with

Dataset20000, Dataset10000, and Dataset5000, respectively. It

can be seen intuitively from the distribution graph that the ML-

based approach can generate test cases near the boundary. And

to cover all boundaries, we need more test cases, such as n=50.

We also record the number of faults detected by each test

set. Table I shows the kill rates corresponding to the test sets

generated by various methods. The results show that the kill

rate of most test sets generated by ML-based approach is better

than that of RT and ART. Compared with RT and ART, our

proposed ML-based approach can generate better quality test

cases and detect more faults.

4.4. Experiment with Real Programs

We select seven programs used in the existing literature to

evaluate the effect of our approach on real programs. Machine

learning can handle both numerical data and categorical data.

During the data processing phase, machine learning models

convert structured data into numerical data because the input

layer of the neural network only accepts numerical input data.

Therefore, in this experiment, we select seven programs with

inputs of only numeric types, containing continuous data and

discrete data. The descriptions of these subject programs are

shown in Table II. And the details about all seven programs are

shown in Table III, such as the dimensional number of program

inputs, the range of input domain, line of code (LOC), fault

information, and the number of boundary values.

Concolic testing: Concolic testing is a hybrid software veri-

fication technique that performs symbolic execution along a

concrete execution path. Symbolic execution is a software

testing technique that substitutes symbolic values for normal

inputs to a program during program execution. By symbolizing

the program inputs, the symbolic execution maintains a set

of constraints for each execution path. After the execution,

constraint solvers will be used to solve the constraint and

determine what inputs cause the execution. Its purpose is

to maximize code coverage. KLEE is a dynamic symbolic

execution tool built on the LLVM compilation framework that

automatically generates test cases and achieves high program

coverage [14]. In this experiment, we use KLEE to generate
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Figure 6: The data distribution generated by RT.

test cases for seven programs and compare the kill rate with

our proposed ML-based method.

Manually-Performed Boundary Value Analysis:
In this experiment, we asked a student to generate a set

of boundary values by manually analyzing the source code

for comparing the fault detection ability with the ML-based

approach.

In this work, the student uses an input that is on the edge of a

given predicate as a boundary value. Suppose there is a path

condition (a > 0) ∨ (b <= 0), including two boundaries a =
0, b = 0, therefore, the input (a,b)=(0,0), input (a,b)=(0,1) and

input (a,b)=(1,0) can be used as three boundary values. In our

experiment, the student selects the endpoints of all boundary

lines in the input domain and the intersection points between

the boundary lines as boundary values. We will compare the

fault detection ability of boundary values obtained by manually

analyzing the source code with the fault detection ability of

ML-based approach that do not manually analyze the source

code. The number of selected boundary values (num Bvalues)

for 7 programs are shown in Table III.

Results and Discussion: We examine the fault detection

capabilities of RT, ART, Manually-performed boundary value

analysis approach, concolic testing and ML-based approach,

respectively. Because our methods show better performance

when the number of initial datasets is n=50 in the experiment

with a simple program. In the real program experiment, the

MCMC generates n = 50 test cases from the input domain.

Table IV shows the comparison of kill rate with RT, ART,

Manually-performed boundary value analysis approach (BVA),

Concolic testing (KLEE), and ML-based approach (MLBVA).

KLEE generates n test cases for each of the seven programs.

Without analyzing the source code, our proposed ML-based
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Figure 7: The data distribution generated by ML-based approach with Dataset.
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TABLE II: Experimental programs

Prog Name Description

triType [15] The type of a triangle

nextDate [16] Calculate the following date of the given day

findMiddle [17] Find the middle number among three numbers

bessj [18] Bessel function J of general integer order

expint [18] Exponential integral

plgndr [18] Legendre polynomials

tcas [19] Aircraft collision avoidance system

TABLE III: Details of 7 subject programs

Program Dim
Input Domain

Size(LOC)
Fault types

Total Faults num Bvalues
From To OBOB CR ROR AOR SVR LOR

triType 3 (0, 0, 0) (100, 100, 100) 41 2 7 2 1 6 18 15

nextDate 3 (1800, -2, -2) (3000, 14, 33) 90 16 7 8 31 42

findMiddle 3 (-100, -100, -100) (100, 100, 100) 36 14 5 19 15

bessj 2 (2,-1000) (300, 15000) 133 10 1 11 1 4 27 21

expint 2 (-10 , -10) (1500, 1500) 109 12 2 2 5 3 10 34 6

plgndr 3 (-5,-5,-5) (5,5,5) 65 6 6 2 3 2 19 12

tcas 12
(0,0,0,0,0,0,

0,0,0,0,0,0)

(1000,1,1,50000,1000,50000,

3,1000,1000,2,2,1)
182 17 4 2 5 6 34 19

TABLE IV: Comparison of kill rate with RT, ART, Manually-performed boundary value analysis approach (BVA), Concolic

testing (KLEE), and ML-based approach (MLBVA)

Method
Kill rate

triType nextDate findMiddle bessj expint plgndr tcas

RT 0.61 0.58 0.36 0.52 0.47 0.63 0.29

ART 0.61 0.51 0.63 0.66 0.47 0.58 0.05

BVA 0.88 0.45 1 0.7 0.7 0.78 0.06

MLBVA

(Dataset20000)
0.72 0.65 1 0.81 0.68 0.95 0.05

MLBVA

(Dataset10000)
0.72 0.7 0.79 0.85 0.79 0.95 0.05

MLBVA

(Dataset5000)
0.66 0.68 0.89 0.59 0.74 0.84 0.05

KLEE
1

(n=14)
0.9

(n=56)
1

(n=13)
0.37

(n=2)

0.38

(n=4)

0.84

(n=14221)

1
(n=1290)

approach outperforms the Manually-performed boundary value

analysis approach in four of the seven programs tested. And

ML-based approach has better fault detection ability than

RT and ART in program tests except for tcas program.

Meanwhile, compared with the concolic testing method, the

kill rate of test cases generated by the ML-based method

outperforms concolic testing among the three programs.

Whether the ML-based approach can generate high-quality

test cases near the boundary highly depends on the accuracy

of the neural network’s prediction of whether the sample is

near the boundary. Table V shows the prediction accuracy

of the neural network in the one-step sampling process of

MCMC. Overall, when the neural network has higher pre-

diction accuracy, the fault detection ability of the generated

test cases will be stronger. In order to use neural networks

to generate higher-quality test cases, we need to consider

improving the performance of neural networks in the future, so

that neural networks can better learn the boundary information

of programs.

Table VI shows the time consumed by the experiment. The

time cost of each method includes test case generation time

and mutation testing time. Dataset10000 and Dataset20000
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TABLE V: Prediction accuracy

Initial trainData
NN prediction accuracy

triType nextDate findMiddle bessj expint plgndr tcas

Dataset20000 0.53 0.54 0.84 0.75 0.48 0.84 0.64

Dataset10000 0.54 0.65 0.78 0.61 0.44 0.81 0.69

Dataset5000 0.46 0.64 0.37 0.33 0.39 0.77 0.78

TABLE VI: Time cost

method
Time (sec)

triType nextDate findMiddle bessj expint plgndr tcas

RT 249 452 287 384 514 259 449

ART 248 572 193 320 190 523 825

MLBVA

(Dataset20000)
11605 11762 11950 11970 11828 11330 11679

MLBVA

(Dataset10000)
6060 6292 6273 6221 6291 5871 6153

MLBVA

(Dataset5000)
3319 3400 3242 3403 3464 3169 3392

KLEE
69

(n=14)

470

(n=56)

68

(n=13)

21

(n=2)

43

(n=4)

76244

(n=14221)

11650

(n=1290)

have similar kill rates but with less time cost for Dataset10000.

In the MLBVA method, the test generation time includes

training data preparation time, neural network training time,

and MCMC computation time. The most time-consuming

of these is the preparation time of the training data. For

example, to prepare 20, 000 training data for the triType
program, 20, 000 executions of the program are needed to

extract execution path information to generate labels, with a

time consumption of 11, 000 seconds. This makes the MLBVA

method more time-consuming than other methods. Therefore

in order to reduce the time cost and improve the prediction

accuracy of the neural network, we will consider using some

structural coverage criteria in future research to help cover

more parts of the code and thus obtain higher-quality training

data instead of using random test case generation to generate

training data.

Besides, there are many equal-conditional expressions in the

programs such as tcas, and our currently proposed method

is not good at generating exact data because the probability of

generating exact data is low. We will also consider addressing

this issue in future work.

5. CONCLUSION

In this paper, we proposed an ML (machine learning) based

approach to automatically generate test cases with Boundary

Value Analysis. First, we train an ML-based discriminator that

determines whether two test inputs have the same execution

path or not. Second, we create test inputs based on Markov

Chain Monte Carlo (MCMC) using the discriminator’s outputs.

We conducted a set of experiments on a simple program and

seven real programs to exhibit the performance of ML-based

approach. Our results showed that the ML-based approach

could generate test cases close to the boundary for testing and

has better fault detection ability than RT and ART. Besides,

the ML-based method outperforms the manually-performed

boundary analysis in four of the seven real programs tested,

and outperforms the concolic testing in three of the seven real

programs tested.

The accuracy of neural network predictions largely affects the

performance of the ML-based approach. In order to use neural

networks to generate higher-quality test cases, we need to

consider improving the performance of neural networks in the

future, so that neural networks can better learn the boundary

information of programs. At the same time, high-quality

training data will also improve the prediction accuracy of the

neural network, and can greatly reduce the time cost, so we

will also improve the training data generation strategy in future

work. Besides, there are many equal-conditional expressions in

the programs, and our currently proposed method is not good

at generating exact data. To improve the fault detection ability

of our proposed method, this problem needs to be solved in

our future work. We will also consider applying our method to

complex software systems with large input spaces and complex

and highly structured inputs.
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